login
A222169
T(n,k)=Number of nXk 0..4 arrays with entries increasing mod 5 by 0, 1 or 2 rightwards and downwards, starting with upper left zero
4
1, 3, 3, 9, 19, 9, 27, 121, 121, 27, 81, 771, 1665, 771, 81, 243, 4913, 22979, 22979, 4913, 243, 729, 31307, 317259, 690437, 317259, 31307, 729, 2187, 199497, 4380445, 20780181, 20780181, 4380445, 199497, 2187, 6561, 1271251, 60481881, 625649047
OFFSET
1,2
COMMENTS
Table starts
......1..........3..............9.................27.....................81
......3.........19............121................771...................4913
......9........121...........1665..............22979.................317259
.....27........771..........22979.............690437...............20780181
.....81.......4913.........317259...........20780181.............1366395515
....243......31307........4380445..........625649047............89948464453
....729.....199497.......60481881........18838482047..........5923189816253
...2187....1271251......835088891.......567241901289........390086038882651
...6561....8100769....11530288395.....17080173559277......25690815631493191
..19683...51620379...159201677509....514300085627023....1691995329032459285
..59049..328939577..2198138788809..15486061794514775..111434983000652039093
.177147.2096095523.30350271502115.466299978310573033.7339124863989795685471
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1)
k=2: a(n) = 7*a(n-1) -4*a(n-2)
k=3: a(n) = 16*a(n-1) -31*a(n-2) +10*a(n-3)
k=4: [order 10]
k=5: [order 25]
k=6: [order 70]
EXAMPLE
Some solutions for n=3 k=4
..0..1..3..3....0..2..3..3....0..1..2..4....0..1..3..4....0..0..0..1
..2..3..0..0....0..2..4..4....1..2..3..4....1..3..4..1....0..2..2..2
..4..0..0..0....2..4..4..0....1..2..3..4....3..4..4..1....0..2..2..3
CROSSREFS
Diagonal is A068748
Column 1 is A000244(n-1)
Column 2 is A138977
Column 3 is A138978
Column 4 is A138979
Sequence in context: A038221 A099465 A099094 * A222444 A206492 A007683
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Feb 10 2013
STATUS
approved