OFFSET
1,2
COMMENTS
Row sums of triangle A135852. - Gary W. Adamson, Dec 01 2007
Binomial transform of [1, 4, 6, 8, 10, 12, 14, 16, ...]. Equals A128064 * A000225, (A000225 starting 1, 3, 7, 15, ...). - Gary W. Adamson, Dec 28 2007
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (5,-8,4).
FORMULA
a(n) = A057711(n+1) - 1 = A058966(n+3)/2 = (A087323(n)-1)/2 = (A074494(n+1)-2)/3 = (A003261(n+1)-3)/4 = A036289(n+1)/4 - 1, n>0.
a(n) = A131056(n+1) - 2. - Juri-Stepan Gerasimov, Oct 02 2011
From Colin Barker, Mar 23 2012: (Start)
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3).
G.f.: x*(1-2*x^2)/((1-x)*(1-2*x)^2). (End)
E.g.f.: ((2*x+1)*exp(2*x) - 2*exp(x) + 1)/2. - G. C. Greubel, Dec 31 2017
MATHEMATICA
Table[(n + 1)*2^(n - 1) - 1, {n, 1, 30}] (* G. C. Greubel, Dec 31 2017 *)
LinearRecurrence[{5, -8, 4}, {1, 5, 15}, 30] (* Harvey P. Dale, Dec 28 2022 *)
PROG
(PARI) a(n)=(n+1)*2^(n-1)-1 \\ Charles R Greathouse IV, Oct 07 2015
(Magma) [(n+1)*2^(n-1) -1: n in [1..30]]; // G. C. Greubel, Dec 31 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Sep 28 2004
STATUS
approved