login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098149 a(0)=-1, a(1)=-1, a(n)=-3*a(n-1)-a(n-2) for n>1. 7
-1, -1, 4, -11, 29, -76, 199, -521, 1364, -3571, 9349, -24476, 64079, -167761, 439204, -1149851, 3010349, -7881196, 20633239, -54018521, 141422324, -370248451, 969323029, -2537720636, 6643838879, -17393796001, 45537549124, -119218851371 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Sequence relates bisections of Lucas and Fibonacci numbers.

2*a(n) + A098150(n) = 8*(-1)^(n+1)*A001519(n) - (-1)^(n+1)*A005248(n+1). Apparently, if (z(n)) is any sequence of integers (not all zero) satisfying the formula z(n) = 2(z(n-2) - z(n-1)) + z(n-3) then |z(n+1)/z(n)| -> golden ratio phi + 1 = (3+sqrt(5))/2.

Pisano period lengths: 1, 3, 4, 6, 1, 12, 8, 6, 12, 3, 10, 12, 7, 24, 4, 12, 9, 12, 18, 6, ... . - R. J. Mathar, Aug 10 2012

REFERENCES

Stees, Ryan, "Sequences of Spiral Knot Determinants" (2016). Senior Honors Projects. Paper 84. James Madison Univ., May 2016; http://commons.lib.jmu.edu/cgi/viewcontent.cgi?article=1043&context=honors201019

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Seong Ju Kim, R. Stees, L. Taalman, Sequences of Spiral Knot Determinants, Journal of Integer Sequences, Vol. 19 (2016), #16.1.4.

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (-3,-1)

FORMULA

G.f.: -(1+4*x)/(1+3*x+x^2). - Philippe Deléham, Nov 19 2006

a(n) = (-1)^n*A002878(n-1). - R. J. Mathar, Jan 30 2011

-a(n+1) = Sum_{k, 0<=k<=n}(-5)^k*Binomial(n+k, n-k) = Sum_{k, 0<=k<=n}(-5)^k*A085478(n, k). - Philippe Deléham, Nov 28 2006

a(n) = -(1/2)*[(-3/2)-(1/2)*sqrt(5)]^n+(1/2)*[(-3/2)-(1/2)*sqrt(5)]^n*sqrt(5)-(1/2)*[(-3/2)+(1/2)*sqrt(5)]^n*sqrt(5)-(1/2)*[(-3/2)+(1/2)*sqrt(5)]^n, with n>=0. - Paolo P. Lava, Nov 19 2008

MATHEMATICA

a[0] = a[1] = -1; a[n_] := a[n] = -3a[n - 2] - a[n - 1]; Table[ a[n], {n, 0, 27}] (* Robert G. Wilson v, Sep 01 2004 *)

LinearRecurrence[{-3, -1}, {-1, -1}, 30] (* Harvey P. Dale, Apr 19 2014 *)

CoefficientList[Series[-(1 + 4 x)/(1 + 3 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 19 2014 *)

CROSSREFS

Cf. A098150, A001519, A005248.

Sequence in context: A027968 A027970 A027972 * A002878 A124861 A110579

Adjacent sequences:  A098146 A098147 A098148 * A098150 A098151 A098152

KEYWORD

easy,sign

AUTHOR

Creighton Dement, Aug 29 2004

EXTENSIONS

Simpler definition from Philippe Deléham, Nov 19 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 02:54 EST 2017. Contains 294840 sequences.