This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098150 a(n) = 2(a(n-2) - a(n-1)) + a(n-3) where a(0)=-3, a(1)=11 & a(2)=-30. 3
 -3, 11, -30, 79, -207, 542, -1419, 3715, -9726, 25463, -66663, 174526, -456915, 1196219, -3131742, 8199007, -21465279, 56196830, -147125211, 385178803, -1008411198, 2640054791, -6911753175, 18095204734, -47373861027, 124026378347, -324705274014, 850089443695, -2225563057071, 5826599727518, -15254236125483 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Sequence relates bisections of Lucas and Fibonacci numbers. Pisano period lengths: 1, 3, 4, 6, 5, 12, 8, 6, 12, 15, 10, 12, 7, 24, 20, 12, 9, 12, 18, 30, ... - R. J. Mathar, Aug 10 2012 LINKS Indranil Ghosh, Table of n, a(n) for n = 0..2383 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (-3,-1). FORMULA 2*A098149(n) + a(n) = 8*(-1)^(n+1)*A001519(n) - (-1)^(n+1)*A005248(n+1). a(n) = - 3a(n-1) - a(n-2). - Tanya Khovanova, Feb 02 2007 G.f.: (2x-3)/(1+3x+x^2). - Philippe Deléham, Nov 16 2008 a(n) = -(3/2)*((-3/2)-(1/2)*sqrt(5))^n - (13/10)*((-3/2)-(1/2)*sqrt(5))^n*sqrt(5) + (13/10)*((-3/2)+(1/2)*sqrt(5))^n*sqrt(5) - (3/2)*((-3/2)+(1/2)*sqrt(5))^n, with n>=0. - Paolo P. Lava, Nov 19 2008 MATHEMATICA a[0] = -3; a[1] = 11; a[2] = -30; a[n_] := a[n] = 2(a[n - 2] - a[n - 1]) + a[n - 3]; Table[ a[n], {n, 0, 25}] (* Robert G. Wilson v, Sep 04 2004 *) RecurrenceTable[{a[0]==-3, a[1]==11, a[2]==-30, a[n]==2(a[n-2]-a[n-1])+ a[n-3]}, a, {n, 30}] (* or *) LinearRecurrence[{-3, -1}, {-3, 11}, 30] (* Harvey P. Dale, Feb 05 2012 *) CROSSREFS Cf. A098149, A001519, A005248. Sequence in context: A106397 A295144 A167375 * A085376 A196233 A009131 Adjacent sequences:  A098147 A098148 A098149 * A098151 A098152 A098153 KEYWORD easy,sign AUTHOR Creighton Dement, Aug 29 2004 EXTENSIONS More terms from Robert G. Wilson v, Sep 04 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.