The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097951 Positive integer values of a chaotic fractional Pisot. 0
 1, 2, 2, 0, 1, 2, 1, 1, 2, 0, 0, 1, 1, 2, 3, 1, 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 3, 1, 1, 1, 1, 2, 3, 0, 1, 1, 1, 1, 2, 0, 1, 1, 1, 2, 3, 0, 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 0, 0, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 1, 2, 3, 0, 1, 2, 1, 1, 2, 0, 1, 2, 1, 2, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The manifold is developed from a fractional power eigenvalue matrix Bezier with determinant adjusted to one and a minimal value of b found by examination. LINKS FORMULA M=N[{{0.1, 0}, {1/2, (b + sqrt(x))/6, 1/2, {1, b, -1}}; A[n_]:=M.A[n-1]; A[0]:={{0, 1, 1}, {1, 1, 2}, {1, 2, 2}}. MATHEMATICA (* Fractional Pisot 3 X 3 Markov sequence *) Clear[M, A, x]; digits = 21; b = -5/4; x = (n + 1)/n; M = N[{{0.1, 0}, {1/2, (b + Sqrt[x])/6, 1/2, {1, b, -1}}; A[n_] := M.A[n - 1]; A[0] := {{0, 1, 1}, {1, 1, 2}, {1, 2, 2}}; (* flattened sequence of 3 X 3 matrices made with a Fractional Pisot recurrence *) b = Flatten[Table[M.A[n], {n, 1, digits}]]; Floor[Abs[b]] CROSSREFS Sequence in context: A091269 A287455 A216789 * A256171 A058643 A029368 Adjacent sequences:  A097948 A097949 A097950 * A097952 A097953 A097954 KEYWORD nonn,uned,obsc AUTHOR Roger L. Bagula, Sep 03 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 24 01:03 EST 2020. Contains 332195 sequences. (Running on oeis4.)