login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097950 G.f.: (1+x^5+x^10)/((1-x)*(1-x^3)). 0
1, 1, 1, 2, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..75.

G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.

E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).

Index entries for Molien series

Index entries for linear recurrences with constant coefficients, signature (2,-1).

FORMULA

Molien series is (1+x^10+x^20)/((1-x^2)*(1-x^6)).

a(n) = n - 3 for n > 7. [Charles R Greathouse IV, Oct 27 2011]

MATHEMATICA

CoefficientList[Series[(1+x^5+x^10)/((1-x)*(1-x^3)), {x, 0, 80}], x] (* or *) LinearRecurrence[{2, -1}, {1, 1, 1, 2, 2, 3, 4, 4, 5}, 80] (* Harvey P. Dale, Oct 11 2015 *)

PROG

(PARI) a(n)=if(n>7, n-3, [1, 1, 1, 2, 2, 3, 4, 4][n+1]) \\ Charles R Greathouse IV, Oct 27 2011

CROSSREFS

Sequence in context: A241948 A051068 A050294 * A011885 A211524 A008672

Adjacent sequences:  A097947 A097948 A097949 * A097951 A097952 A097953

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Sep 06 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 13:53 EST 2017. Contains 295001 sequences.