login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097870
Molien series for group of order 4608 acting on joint weight enumerators of a pair of binary doubly-even self-dual codes.
2
1, 2, 4, 10, 17, 27, 45, 66, 92, 130, 173, 223, 289, 362, 444, 546, 657, 779, 925, 1082, 1252, 1450, 1661, 1887, 2145, 2418, 2708, 3034, 3377, 3739, 4141, 4562, 5004, 5490, 5997, 6527, 7105, 7706, 8332, 9010, 9713, 10443, 11229, 12042, 12884, 13786, 14717, 15679
OFFSET
0,2
COMMENTS
This is the Molien series for the group of order 128 discussed in A097869 extended by the extra generator diag{1,1,i,i}. This group was not considered in the reference cited.
The first g.f. inserts zeros between each pair of terms; the second g.f. does not. - Colin Barker, Feb 12 2015
LINKS
F. J. MacWilliams, C. L. Mallows and N. J. A. Sloane, Generalizations of Gleason's theorem on weight enumerators of self-dual codes, IEEE Trans. Inform. Theory, 18 (1972), 794-805.
FORMULA
G.f.: (1 + x^2 + 2*x^3 + x^4 + x^5 + x^6 + x^7)/(1 - 2*x + x^2 - 2*x^3 +
4*x^4 - 2*x^5 + x^6 - 2*x^7 + x^8).
G.f.: (1+x)*(1-x+x^2)*(1+x^2+x^3+x^4) / ((1-x)^4*(1+x+x^2)^2). - Colin Barker, Feb 12 2015
MAPLE
m:=50; S:=series((1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2, x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 05 2020
MATHEMATICA
CoefficientList[Series[(1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2, {x, 0, 50}], x] (* G. C. Greubel, Feb 05 2020 *)
LinearRecurrence[{2, -1, 2, -4, 2, -1, 2, -1}, {1, 2, 4, 10, 17, 27, 45, 66}, 50] (* Harvey P. Dale, Jun 11 2022 *)
PROG
(PARI) Vec((x+1)*(x^2-x+1)*(x^4+x^3+x^2+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Feb 12 2015
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2 )); // G. C. Greubel, Feb 05 2020
(Sage)
def A097870_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2 ).list()
A097870_list(50) # G. C. Greubel, Feb 05 2020
CROSSREFS
Cf. A097869.
Sequence in context: A264585 A077635 A125754 * A244474 A301739 A152231
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 02 2004
STATUS
approved