login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097778 Chebyshev polynomials S(n,23) with Diophantine property. 1
1, 23, 528, 12121, 278255, 6387744, 146639857, 3366328967, 77278926384, 1774048977865, 40725847564511, 934920445005888, 21462444387570913, 492701300469125111, 11310667466402306640, 259652650426783927609 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

All positive integer solutions of Pell equation b(n)^2 - 525*a(n)^2 = +4 together with b(n)=A090731(n+1), n>=0. Note that D=525=21*5^2 is not squarefree.

For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 23's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011

For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,22}. - Milan Janjic, Jan 25 2015

LINKS

Table of n, a(n) for n=0..15.

R. Flórez, R. A. Higuita, A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).

Tanya Khovanova, Recursive Sequences

Index entries for sequences relate d to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (23,-1).

FORMULA

a(n) = S(n, 23) = U(n, 23/2) = S(2*n+1, sqrt(25))/sqrt(25) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x)= 0 = U(-1, x).

a(n) = 23*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=23; a(-1)=0.

a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap := (23+5*sqrt(21))/2 and am := (23-5*sqrt(21))/2.

G.f.: 1/(1-23*x+x^2).

a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*22^k. - Philippe Deléham, Feb 10 2012

Product {n >= 0} (1 + 1/a(n)) = 1/21*(21 + 5*sqrt(21)). - Peter Bala, Dec 23 2012

Product {n >= 1} (1 - 1/a(n)) = 1/46*(21 + 5*sqrt(21)). - Peter Bala, Dec 23 2012

EXAMPLE

(x,y) = (23;1), (527;23), (12098;528), ... give the positive integer solutions to x^2 - 21*(5*y)^2 =+4.

MATHEMATICA

LinearRecurrence[{23, -1}, {1, 23}, 20] (* Harvey P. Dale, May 06 2016 *)

PROG

(Sage) [lucas_number1(n, 23, 1) for n in xrange(1, 20)] # Zerinvary Lajos, Jun 25 2008

CROSSREFS

Sequence in context: A114926 A118338 A171328 * A057193 A014960 A207230

Adjacent sequences:  A097775 A097776 A097777 * A097779 A097780 A097781

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Aug 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 04:58 EST 2016. Contains 279034 sequences.