

A014960


Integers n such that n divides 24^n  1.


11



1, 23, 529, 1081, 12167, 24863, 50807, 279841, 571849, 1168561, 2387929, 2870377, 6436343, 7009273, 13152527, 15954479, 26876903, 54922367, 66018671, 112232663, 134907719, 148035889, 161213279, 302508121, 329435831
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Also, numbers n such that n divides s(n), where s(1)=1, s(k)=s(k1)+k*24^(k1) (cf. A014942).
All n > 1 in the sequence are multiple of 23.  Conjectured by Thomas Baruchel, Oct 10 2003; proved by Max Alekseyev, Nov 16 2019
If n is a term and prime p(24^n  1), then n*p is a term. In particular, if n is a term and prime pn, then n*p is a term. The smallest term with 3 distinct prime factors is a(16) = 15954479 = 23 * 47 * 14759.  Max Alekseyev, Nov 16 2019


LINKS

Max Alekseyev, Table of n, a(n) for n = 1..146


MATHEMATICA

s = 1; Do[ If[ Mod[ s, n ] == 0, Print[n]]; s = s + (n + 1)*24^n, {n, 1, 100000}]


CROSSREFS

Prime factors are listed in A087807.
Cf. A014942.
Integers n such that n divides b^n  1: A067945 (b=3), A014945 (b=4), A067946 (b=5), A014946 (b=6), A067947 (b=7), A014949 (b=8), A068382 (b=9), A014950 (b=10), A068383 (b=11), A014951 (b=12), A116621 (b=13), A014956 (b=14), A177805 (b=15), A014957 (b=16), A177807 (b=17), A128358 (b=18), A125000 (b=19), A128360 (b=20), A014959 (b=22).
Sequence in context: A097778 A332797 A057193 * A207230 A207223 A207010
Adjacent sequences: A014957 A014958 A014959 * A014961 A014962 A014963


KEYWORD

nonn


AUTHOR

Olivier Gérard


EXTENSIONS

More terms from Robert G. Wilson v, Sep 13 2000
a(9)a(12) from Thomas Baruchel, Oct 10 2003
Edited and terms a(13) onward added by Max Alekseyev, Nov 16 2019


STATUS

approved



