The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096961 Sum_{0
 1, 128, 2188, 16384, 78126, 280064, 823544, 2097152, 4785157, 10000128, 19487172, 35848192, 62748518, 105413632, 170939688, 268435456, 410338674, 612500096, 893871740, 1280016384, 1801914272, 2494358016, 3404825448 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..10000 H. H. Chan and C. Krattenthaler, Recent progress in the study of representations of integers as sums of squares, arXiv:math/0407061 [math.NT], 2004. J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8). FORMULA G.f.: Sum_{k>0} k^7 * x^k / (1 - x^(2*k)). Expansion of (E_8(q) - E_8(q^2)) / 480 in powers of q where E_8() is an Eisenstein series (A008410). - Michael Somos, Jan 09 2015 EXAMPLE G.f. = q + 128*q^2 + 2188*q^3 + 16384*q^4 + 78126*q^5 + 280064*q^6 + 823544*q^7 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ With[{u1 = QPochhammer[ q]^8, u2 = QPochhammer[ q^2]^8, u4 = QPochhammer[ q^4]^8}, q u2 (u1^2 + 136 q u4 u1 + 2176 q^2 u4^2 ) / u1], {q, 0, n}]; (* Michael Somos, Jun 04 2013 *) a[ n_] := If[ n < 1, 0, Sum[ d^7 Mod[ n/d, 2], {d, Divisors[ n]}]]; (* Michael Somos, Jan 09 2015 *) PROG (PARI) {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d^7))}; (Sage) ModularForms( Gamma0(2), 8, prec=24).2; # Michael Somos, Jun 04 2013 (MAGMA) A := Basis( ModularForms( Gamma0(2), 8), 24); A[2] + 128*A[3]; /* Michael Somos, Nov 30 2014 */ CROSSREFS Cf. A007331, A008410, A096960, A096962, A096963. Sequence in context: A046456 A092759 A056574 * A231306 A236209 A283548 Adjacent sequences:  A096958 A096959 A096960 * A096962 A096963 A096964 KEYWORD nonn,mult AUTHOR Ralf Stephan, Jul 18 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 05:31 EST 2020. Contains 331067 sequences. (Running on oeis4.)