login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096884
a(n) = 101^n.
7
1, 101, 10201, 1030301, 104060401, 10510100501, 1061520150601, 107213535210701, 10828567056280801, 1093685272684360901, 110462212541120451001, 11156683466653165551101, 1126825030131969720661201, 113809328043328941786781301, 11494742132376223120464911401, 1160968955369998535166956051501
OFFSET
0,2
COMMENTS
A185817(n) = smallest m such that in decimal representation n is a prefix of a(m).
a(n) gives the n-th row of Pascals' triangle (A007318) as long as all the binomial coefficients have at most two digits, otherwise the binomial coefficients with more than two digits overlap. - Daniel Forgues, Aug 12 2012
From Peter M. Chema, Apr 10 2016: (Start)
One percent growth applied n times increases a value by factor of a(n)/10^(2n), since 1% increases using "1.01". Therefore (a(n)/10^(2n) - 1)*100 = the percentage increase of one percent growth applied n times.
For instance, 432 increasing by 1% three times gives 445.090032 (i.e., 432*1.01^3), which is 1.030301 (a(3)/10^(2*3)) times 432 or a 3.0301% increase from the original 432 ((a(3)/10^(2*3)-1)*100 = 3.0301). (End)
FORMULA
a(n) = Sum_{k=0..n} binomial(n, k)*10^(n-k).
a(n) = A096883(2n).
a(n) = 101^n. a(n) = Sum_{k=0..n,} binomial(n, k)*100^k. - Paul Barry, Aug 24 2004
G.f.: 1/(1-101*x). - Philippe Deléham, Nov 25 2008
E.g.f.: exp(101*x). - Ilya Gutkovskiy, Apr 10 2016
MATHEMATICA
Table[101^n, {n, 0, 11}] \\ Ilya Gutkovskiy, Apr 10 2016
PROG
(PARI) a(n)=101^n \\ Charles R Greathouse IV, Oct 16 2015
(PARI) x='x+O('x^99); Vec(1/(1-101*x)) \\ Altug Alkan, Apr 10 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 14 2004
STATUS
approved