OFFSET
0,2
COMMENTS
A185817(n) = smallest m such that in decimal representation n is a prefix of a(m).
a(n) gives the n-th row of Pascals' triangle (A007318) as long as all the binomial coefficients have at most two digits, otherwise the binomial coefficients with more than two digits overlap. - Daniel Forgues, Aug 12 2012
From Peter M. Chema, Apr 10 2016: (Start)
One percent growth applied n times increases a value by factor of a(n)/10^(2n), since 1% increases using "1.01". Therefore (a(n)/10^(2n) - 1)*100 = the percentage increase of one percent growth applied n times.
For instance, 432 increasing by 1% three times gives 445.090032 (i.e., 432*1.01^3), which is 1.030301 (a(3)/10^(2*3)) times 432 or a 3.0301% increase from the original 432 ((a(3)/10^(2*3)-1)*100 = 3.0301). (End)
LINKS
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (101).
FORMULA
a(n) = Sum_{k=0..n} binomial(n, k)*10^(n-k).
a(n) = A096883(2n).
a(n) = 101^n. a(n) = Sum_{k=0..n,} binomial(n, k)*100^k. - Paul Barry, Aug 24 2004
G.f.: 1/(1-101*x). - Philippe Deléham, Nov 25 2008
E.g.f.: exp(101*x). - Ilya Gutkovskiy, Apr 10 2016
MATHEMATICA
Table[101^n, {n, 0, 11}] \\ Ilya Gutkovskiy, Apr 10 2016
PROG
(PARI) a(n)=101^n \\ Charles R Greathouse IV, Oct 16 2015
(PARI) x='x+O('x^99); Vec(1/(1-101*x)) \\ Altug Alkan, Apr 10 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 14 2004
STATUS
approved