login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096509
Number of prime-powers [including primes] in the (up and down) neighborhood of n with Ceiling[Log[n]] radius.
26
0, 2, 4, 4, 4, 4, 4, 5, 4, 5, 4, 3, 3, 4, 3, 4, 3, 3, 3, 3, 4, 3, 4, 3, 4, 4, 5, 5, 5, 4, 4, 3, 4, 3, 3, 2, 2, 2, 3, 3, 3, 2, 3, 3, 4, 3, 3, 2, 3, 3, 3, 2, 2, 1, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 4, 3, 4, 4, 3, 3, 3, 2, 3, 3, 4, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 3, 3, 3, 3, 4, 3, 4, 4
OFFSET
1,2
COMMENTS
With increasing n the radius of log(n) slowly increases, while frequency of prime-powers decreases. Thus hard to estimate upper bound of terms in this sequence.
Heuristically a(n) = 0 about 1/e^2 = 13.53...% of the time. The first few instances are 1, 300, 324, 895, 896, 897, 898, 899, 1077, .... - Charles R Greathouse IV, Apr 30 2015
FORMULA
a(n) <= A023193(2*A004233(n)+1) + A000720(A000523(A004233(n) + n)) and so a(n) << log n/log log n (with constant at most 4 + 1/log(2) = 5.442...). Probably a(n) < 2 log n/log log n + O(log n/(log log n)^2). - Charles R Greathouse IV, Apr 29 2015
EXAMPLE
n=284736: in [284723,284749] around n, 8 prime(powers) occur,radius=13, a[284736]=8.
MATHEMATICA
a[n_] := Select[Range[n - Ceiling[Log[n]], n + Ceiling[Log[n]]], PrimePowerQ] // Length; Array[a, 105] (* Jean-François Alcover, Oct 06 2016 *)
PROG
(PARI) a(n)=my(t=ceil(log(n))); sum(k=n-t, n+t, !!isprimepower(k)) \\ Charles R Greathouse IV, Apr 29 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 12 2004
STATUS
approved