%I
%S 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,1,5,1,1,5,1,1,6,6,2,6,6,1,1,7,3,8,8,3,
%T 7,1,1,8,1,2,7,2,1,8,1,1,0,0,3,0,0,3,0,0,1,1,1,0,3,3,0,3,3,0,1,1,1,2,
%U 1,3,6,3,3,6,3,1,2,1,1,3,3,4,0,0,6,0,0,4,3,3,1,1,4,6,7,4,0,6,6,0,4,7,6,4,1
%N Triangle formed by reading Pascal's triangle (A007318) mod 9.
%H James G. Huard; Blair K. Spearman; Kenneth S. Williams, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa78/aa7843.pdf">Pascal's triangle (mod 9)</a>, Acta Arithmetica (1997), Volume: 78, Issue: 4, page 331349.
%F T(i, j) = binomial(i, j) (mod 9).
%e Triangle begins:
%e 1;
%e 1, 1;
%e 1, 2, 1;
%e 1, 3, 3, 1;
%e 1, 4, 6, 4, 1;
%e 1, 5, 1, 1, 5, 1;
%e 1, 6, 6, 2, 6, 6, 1;
%e ...
%t Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 9]
%Y Cf. A007318, A047999, A083093, A034931, A095140, A095141, A095142, A034930, A008975, A095144, A095145, A034932.
%Y Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
%K easy,nonn,tabl
%O 0,5
%A _Robert G. Wilson v_, May 29 2004
