This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094292 Number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| <= 1 for i = 1,2,....,n, s(0) = 2, s(n) = 4. 2
 0, 0, 1, 3, 9, 25, 68, 182, 483, 1275, 3355, 8811, 23112, 60580, 158717, 415715, 1088661, 2850645, 7463884, 19541994, 51163695, 133951675, 350695511, 918141623, 2403740304, 6293097000, 16475579353, 43133687427, 112925557953 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS In general a(n,m,j,k)=2/m*Sum(r,1,m-1,Sin(j*r*Pi/m)Sin(k*r*Pi/m)(1+2Cos(Pi*r/m))^n) is the number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < m and |s(i) - s(i-1)| <= 1 for i = 1,2,....,n, s(0) = j, s(n) = k. a(n+1) is an inverse Catalan transform of F(3n)/F(3). The g.f. may be obtained from that of A001076 under the mapping g(x)-> g(x(1-x)). - Paul Barry, Nov 17 2004 A transform of Fib(2n) : Fib(2n) may be recovered as sum{k=0..2n, sum{j=0..k, C(0,2n-k)C(k,j)(-1)^(k-j)*A094292(j)}}. - Paul Barry, Jun 10 2005 LINKS É. Czabarka, R. Flórez, L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6. Index entries for linear recurrences with constant coefficients, signature (4,-3,-2,1). FORMULA a(n) = (2/5)*Sum(k, 1, 4, Sin(2Pi*k/5)Sin(4Pi*k/5)(1+2Cos(Pi*k/5))^n). a(n) = 4*a(n-1)-3*a(n-2)-2*a(n-3)+a(n-4) G.f.: (x^2-x^3)/(1-4x+3x^2+2x^3-x^4) - Herbert Kociemba, Jun 16 2004 a(n) = (Fibonacci(2*n)-Fibonacci(n))/2. - Vladeta Jovovic, Jul 17 2004 a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k, k)(-1)^k*F(3n-3k)/F(3). - Paul Barry, Nov 17 2004 a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)Fib(2k). - Paul Barry, Jun 10 2005 a(n) = Sum_{k=0..n-1} Fibonacci(n+k-1)/2. [Gary Detlefs, Feb 22 2011] a(n) = Fibonacci(n)*(Lucas(n) - 1)/2. - Vladimir Reshetnikov, Sep 27 2016 MATHEMATICA Table[Sum[Fibonacci[n - 1 + i]/2, {i, 0, n - 1}], {n, 0, 27}]  (* Zerinvary Lajos, Jul 12 2009 *) Table[Fibonacci[n] (LucasL[n] - 1)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 27 2016 *) PROG (Mupad)(numlib::fibonacci(2*n)-numlib::fibonacci(n))/2 \$ n = 0..35; // Zerinvary Lajos, May 09 2008 CROSSREFS Cf. A000032, A000045, A049681. Sequence in context: A069403 A291021 A226710 * A291019 A236570 A201533 Adjacent sequences:  A094289 A094290 A094291 * A094293 A094294 A094295 KEYWORD easy,nonn AUTHOR Herbert Kociemba, Jun 02 2004 EXTENSIONS a(0) = a(1) = 0 added and offset changed to 0 by Vladimir Reshetnikov, Oct 04 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.