login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093934 Number of equivalence classes of unlabeled tournaments with n signed nodes. 2
1, 2, 4, 12, 48, 296, 3040, 54256, 1716608, 97213472, 9937755904, 1849103423168, 631027551238656, 397616229914793600, 465313769910614218240, 1016485858155549165160192, 4163516302794478683289989120, 32101177200132015985353543496192, 467507173926886632279989196725442560 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Similar to unlabeled tournaments (A000568), with the additional feature that each node carries either a plus sign or a minus sign.

Equivalence is defined with respect to the action of S_n on the nodes (and the induced action on the edges).

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..30

FORMULA

a(n) = Sum_{j} (1/(Product (r^(j_r) (j_r)!))) * 2^{t_j},

where j runs through all partitions of n into odd parts, say with j_1 parts of size 1, j_3 parts of size 3, etc.,

and t_j = (1/2)*[ Sum_{r=1..n, s=1..n} j_r j_s gcd(r,s) + Sum_{r} j_r ].

MAPLE

with(combinat); with(numtheory);

for n from 1 to 30 do

p:=partition(n); s:=0:

for k from 1 to nops(p) do

# get next partition of n

ex:=1:

# discard if there is an even part

for i from 1 to nops(p[k]) do if p[k][i] mod 2=0 then ex:=0:break:fi: od:

# analyze an odd partition

if ex=1 then

# convert partition to list of sizes of parts

q:=convert(p[k], multiset);

for i from 1 to n do a(i):=0: od:

for i from 1 to nops(q) do a(q[i][1]):=q[i][2]: od:

# get number of parts

nump := add(a(i), i=1..n);

# get multiplicity

c:=1: for i from 1 to n do c:=c*a(i)!*i^a(i): od:

# get exponent t(j)

tj:=0;

for i from 1 to n do for j from 1 to n do

if a(i)>0 and a(j)>0 then tj:=tj+a(i)*a(j)*gcd(i, j); fi;

od: od:

s:=s + (1/c)*2^((tj+nump)/2);

fi:

od;

A[n]:=s;

od:

[seq(A[n], n=1..30)];

CROSSREFS

Cf. A000568.

Sequence in context: A030801 A263867 A082480 * A109458 A030963 A030879

Adjacent sequences:  A093931 A093932 A093933 * A093935 A093936 A093937

KEYWORD

nonn

AUTHOR

Nadia Heninger and N. J. A. Sloane, Jul 21 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 30 08:46 EDT 2017. Contains 287302 sequences.