The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A093934 Number of equivalence classes of unlabeled tournaments with n signed nodes. 2
 1, 2, 4, 12, 48, 296, 3040, 54256, 1716608, 97213472, 9937755904, 1849103423168, 631027551238656, 397616229914793600, 465313769910614218240, 1016485858155549165160192, 4163516302794478683289989120, 32101177200132015985353543496192, 467507173926886632279989196725442560 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Similar to unlabeled tournaments (A000568), with the additional feature that each node carries either a plus sign or a minus sign. Equivalence is defined with respect to the action of S_n on the nodes (and the induced action on the edges). LINKS Andrew Howroyd, Table of n, a(n) for n = 0..50 (terms n = 0..30 from N. J. A. Sloane) FORMULA a(n) = Sum_{j} (1/(Product (r^(j_r) (j_r)!))) * 2^{t_j}, where j runs through all partitions of n into odd parts, say with j_1 parts of size 1, j_3 parts of size 3, etc., and t_j = (1/2)*[ Sum_{r=1..n, s=1..n} j_r j_s gcd(r,s) + Sum_{r} j_r ]. MAPLE with(combinat); with(numtheory); for n from 1 to 30 do p:=partition(n); s:=0: for k from 1 to nops(p) do # get next partition of n ex:=1: # discard if there is an even part for i from 1 to nops(p[k]) do if p[k][i] mod 2=0 then ex:=0:break:fi: od: # analyze an odd partition if ex=1 then # convert partition to list of sizes of parts q:=convert(p[k], multiset); for i from 1 to n do a(i):=0: od: for i from 1 to nops(q) do a(q[i]):=q[i]: od: # get number of parts nump := add(a(i), i=1..n); # get multiplicity c:=1: for i from 1 to n do c:=c*a(i)!*i^a(i): od: # get exponent t(j) tj:=0; for i from 1 to n do for j from 1 to n do if a(i)>0 and a(j)>0 then tj:=tj+a(i)*a(j)*gcd(i, j); fi; od: od: s:=s + (1/c)*2^((tj+nump)/2); fi: od; A[n]:=s; od: [seq(A[n], n=1..30)]; PROG (PARI) permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)} oddp(v) = {for(i=1, #v, if(bitand(v[i], 1)==0, return(0))); 1} a(n) = {my(s=0); forpart(p=n, if(oddp(p), s+=permcount(p)*2^(#p+edges(p)))); s/n!} \\ Andrew Howroyd, Feb 29 2020 CROSSREFS Cf. A000568. Sequence in context: A263867 A326863 A082480 * A109458 A030963 A030879 Adjacent sequences:  A093931 A093932 A093933 * A093935 A093936 A093937 KEYWORD nonn AUTHOR Nadia Heninger and N. J. A. Sloane, Jul 21 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 9 00:57 EDT 2020. Contains 333339 sequences. (Running on oeis4.)