login
A093138
Expansion of (1-7x)/(1-10x).
9
1, 3, 30, 300, 3000, 30000, 300000, 3000000, 30000000, 300000000, 3000000000, 30000000000, 300000000000, 3000000000000, 30000000000000, 300000000000000, 3000000000000000, 30000000000000000, 300000000000000000, 3000000000000000000, 30000000000000000000, 300000000000000000000
OFFSET
0,2
COMMENTS
Partial sums are A093137. A convex combination of 10^n and 0^n.
LINKS
M. H. Cilasun, An Analytical Approach to Exponent-Restricted Multiple Counting Sequences, arXiv preprint arXiv:1412.3265 [math.NT], 2014.
M. H. Cilasun, Generalized Multiple Counting Jacobsthal Sequences of Fermat Pseudoprimes, Journal of Integer Sequences, Vol. 19, 2016, #16.2.3.
Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
FORMULA
a(n) = 3*10^n/10 + 7*0^n/10.
a(n) = 3*10^(n-1) with a(0)=1. - Vincenzo Librandi, Aug 02 2010
E.g.f.: (3*exp(10*x) + 7)/10. - Elmo R. Oliveira, Aug 13 2024
PROG
(PARI) Vec((1-7*x)/(1-10*x) + O(x^30)) \\ Michel Marcus, Sep 07 2015
CROSSREFS
Cf. A093137.
Sequence in context: A136935 A136942 A136947 * A361896 A073557 A037764
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Mar 24 2004
STATUS
approved