login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093137 Expansion of (1-7*x)/((1-x)(1-10*x)). 15
1, 4, 34, 334, 3334, 33334, 333334, 3333334, 33333334, 333333334, 3333333334, 33333333334, 333333333334, 3333333333334, 33333333333334, 333333333333334, 3333333333333334, 33333333333333334, 333333333333333334 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Second binomial transform of 3*A001045(3n)/3+(-1)^n. Partial sums of A093138. A convex combination of 10^n and 1. In general the second binomial transform of k*Jacobsthal(3n)/3+(-1)^n is 1,1+k,1+11k,1+111k,... This is the case for k=3.

a(n) is the number of n-length sequences of decimal digits whose sum is divisible by 3. - Geoffrey Critzer, Jan 18 2014

This sequence appears in a family of curious cubic identities based on the Armstrong number 407 = A005188(13). See the formula section. For the analog identities based on 153 = A005188(10) see a comment on A246057 with the van der Poorten et al. reference and A281857. For those based on 370 = A005188(11) see A067275, A002277 and A281858. - Wolfdieter Lang, Feb 08 2017

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (11,-10).

FORMULA

a(n) = 3*10^n/9 + 6/9.

a(n) = 10*a(n-1)-6 with a(0)=1. - Vincenzo Librandi, Aug 02 2010

a(n)^3 + 0(n)^3 + A067275(n+1)^3 = concatenation(a(n), 0(n), A067275(n+1)) = A281859(n), where 0(n) denotes n 0's, n >= 1. - Wolfdieter Lang, Feb 08 2017

EXAMPLE

a(1)^2 = 16

a(2)^2 = 1156

a(3)^2 = 111556

a(4)^2 = 11115556

a(5)^2 = 1111155556

a(6)^2 = 111111555556

a(7)^2 = 11111115555556

a(8)^2 = 1111111155555556

a(9)^2 = 111111111555555556, etc... - Philippe Deléham, Oct 03 2011

Curious cubic identities: 407 = 4^3 + 0^3 + 7^3, 340067 = 34^3 + (00)^3 + 67^3, 334000677 = 334^3 + (000)^3 + 677^3, ... - Wolfdieter Lang, Feb 08 2017

MATHEMATICA

nn=20; r=Solve[{s==4x s+3 x a+3x b+1, a==4x a+3x s+3x b, b==4x b+3x s+3x a}, {s, a, b}]; CoefficientList[Series[s/.r, {x, 0, nn}], x] (* Geoffrey Critzer, Jan 18 2014 *)

Table[3*10^n/9 + 6/9, {n, 0, 20}] (* or *) NestList[10 # - 6 &, 1, 20] (* Michael De Vlieger, Feb 08 2017 *)

LinearRecurrence[{11, -10}, {1, 4}, 20] (* Harvey P. Dale, Oct 07 2017 *)

PROG

(PARI) Vec((1-7*x)/((1-x)*(1-10*x)) + O (x^30)) \\ Michel Marcus, Feb 09 2017

CROSSREFS

Cf. A005188, A067275, A246057, A281857, A281859.

Sequence in context: A232910 A208215 A025572 * A332617 A333095 A214693

Adjacent sequences:  A093134 A093135 A093136 * A093138 A093139 A093140

KEYWORD

nonn,easy

AUTHOR

Paul Barry, Mar 24 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 15:33 EDT 2020. Contains 334684 sequences. (Running on oeis4.)