login
A091993
Numerator of I(n) = Integral_{x=0 to 1/3} (1+x^2)^n dx.
1
1, 28, 1308, 85632, 7215504, 743895360, 90735698880, 12784048058880, 2043605420478720, 365523503117552640, 72341521311159475200, 15698552277109576089600, 3707121435080668435353600
OFFSET
0,2
COMMENTS
The denominator is b(n)=(2*n+2)!*3^(2*n+1)/((n+1)!*2^(n+1)).
LINKS
EXAMPLE
The fourth term is 85632 since I(3)= 85632/229635.
MATHEMATICA
A091993[n_] := Integrate[(1 + x^2)^n, {x, 0, 1/3}](2*n + 2)!*3^(2*n + 1)/((n + 1)!*2^(n + 1)); Table[ A091993[n], {n, 0, 13}] (* Robert G. Wilson v, Mar 18 2004 *)
CROSSREFS
Sequence in context: A061321 A342894 A281328 * A213692 A118705 A249348
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)excite.com), Mar 17 2004
EXTENSIONS
More terms from Robert G. Wilson v, Mar 18 2004
STATUS
approved