login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091888
Irregularity index of prime(n): number of numbers k, 1 <= k <= (p-3)/2, such that p = prime(n) divides the numerator of the Bernoulli number B(2k).
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 2, 0, 0, 3, 0, 0, 0, 0, 1, 1, 2, 1, 0, 0, 0, 1
OFFSET
2,36
COMMENTS
Note offset is 2: only odd primes are considered.
LINKS
FORMULA
0 if p is a regular prime; > 0 if p is an irregular prime.
MATHEMATICA
irregPrimeIndex[n_] := Block[{p = Prime[n], cnt = 0, k = 1}, While[ 2k + 2 < p, If[ Mod[ Numerator[ BernoulliB[ 2k]], p] == 0, cnt++]; k++]; cnt]; Array[ irregPrimeIndex, 105, 2] (* Robert G. Wilson v, Sep 20 2012 *)
PROG
(PARI) a(n)=sum(i=1, (prime(n)-1)/2, if(numerator(bernfrac(2*i))%prime(n), 0, 1)) \\ corrected by Amiram Eldar, May 10 2022
CROSSREFS
Cf. A073277 (primes having irregularity index 2), A060975 (primes having irregularity index 3), A061576 (least prime having irregularity index n), A091887 (irregularity index of irregular prime A000928(n)).
Sequence in context: A354449 A349436 A089811 * A083928 A074038 A204843
KEYWORD
nonn
AUTHOR
T. D. Noe and Benoit Cloitre, Feb 09 2004
STATUS
approved