This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091888 Irregularity index of prime(n): number of numbers k, 1<=k<=(p-3)/2, such that p = prime(n) divides the numerator of the Bernoulli number B(2k). 2
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 2, 0, 0, 3, 0, 0, 0, 0, 1, 1, 2, 1, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,36 COMMENTS Note offset is 2: only odd primes are considered. LINKS FORMULA 0 if p is a regular prime; > 0 if p is an irregular prime MATHEMATICA irregPrimeIndex[n_] := Block[{p = Prime[n], cnt = 0, k = 1}, While[ 2k + 2 < p, If[ Mod[ Numerator[ BernoulliB[ 2k]], p] == 0, cnt++]; k++]; cnt]; Array[ irregPrimeIndex, 105, 2] (* Robert G. Wilson v, Sep 20 2012 *) PROG (PARI) a(n)=sum(i=1, (n-1)/2, if(numerator(bernfrac(2*i))%n, 0, 1)) CROSSREFS Cf. A073277 (primes having irregularity index 2), A060975 (primes having irregularity index 3), A061576 (least prime having irregularity index n), A091887 (irregularity index of irregular prime A000928(n)). Cf. A027641/A027642, A000367/A002445, A000928. Sequence in context: A005926 A089803 A089811 * A083928 A074038 A204843 Adjacent sequences:  A091885 A091886 A091887 * A091889 A091890 A091891 KEYWORD nonn AUTHOR T. D. Noe and Benoit Cloitre, Feb 09 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.