login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091888 Irregularity index of prime(n): number of numbers k, 1<=k<=(p-3)/2, such that p = prime(n) divides the numerator of the Bernoulli number B(2k). 2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 2, 0, 0, 3, 0, 0, 0, 0, 1, 1, 2, 1, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,36

COMMENTS

Note offset is 2: only odd primes are considered.

LINKS

Table of n, a(n) for n=2..106.

FORMULA

0 if p is a regular prime; > 0 if p is an irregular prime

MATHEMATICA

irregPrimeIndex[n_] := Block[{p = Prime[n], cnt = 0, k = 1}, While[ 2k + 2 < p, If[ Mod[ Numerator[ BernoulliB[ 2k]], p] == 0, cnt++]; k++]; cnt]; Array[ irregPrimeIndex, 105, 2] (* Robert G. Wilson v, Sep 20 2012 *)

PROG

(PARI) a(n)=sum(i=1, (n-1)/2, if(numerator(bernfrac(2*i))%n, 0, 1))

CROSSREFS

Cf. A073277 (primes having irregularity index 2), A060975 (primes having irregularity index 3), A061576 (least prime having irregularity index n), A091887 (irregularity index of irregular prime A000928(n)).

Cf. A027641/A027642, A000367/A002445, A000928.

Sequence in context: A005926 A089803 A089811 * A083928 A074038 A204843

Adjacent sequences:  A091885 A091886 A091887 * A091889 A091890 A091891

KEYWORD

nonn

AUTHOR

T. D. Noe and Benoit Cloitre, Feb 09 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 20 06:32 EDT 2017. Contains 290824 sequences.