login
A091724
Decimal expansion of e^(2*EulerGamma).
4
3, 1, 7, 2, 2, 1, 8, 9, 5, 8, 1, 2, 5, 4, 5, 0, 5, 2, 7, 7, 2, 7, 9, 1, 3, 4, 0, 9, 0, 6, 9, 4, 7, 4, 9, 7, 7, 1, 2, 2, 9, 5, 7, 7, 3, 7, 7, 7, 2, 3, 0, 0, 4, 5, 8, 5, 1, 4, 7, 7, 8, 2, 8, 8, 4, 1, 9, 2, 5, 2, 1, 4, 4, 1, 1, 6, 3, 8, 9, 4, 6, 3, 6, 6, 4, 6, 3, 8, 1, 7, 8, 7, 5, 0, 8, 4, 8, 9, 6, 6, 6, 5
OFFSET
1,1
LINKS
Jean-Marie De Koninck and Florian Luca, On the composition of the Euler function and the sum of divisors function, Colloquium Mathematicum, Vol. 108, No. 1 (2007), pp. 31-51.
Eric Weisstein's World of Mathematics, Exponential Integral.
FORMULA
Equals lim_{x -> 0} e^(2*ExpIntegralEi(-x))/x^2.
Equals A073004^2. - Michel Marcus, Jun 25 2021
Equals lim sup_{n->oo} H(n)/log_2(n)^2, where H(n) = A370689(n)/A370690(n) (De Koninck and Luca, 2007). - Amiram Eldar, Feb 27 2024
EXAMPLE
3.17221895812545052772791340906947497712295773777230...
MATHEMATICA
RealDigits[Exp[2*EulerGamma], 10, 100][[1]] (* Amiram Eldar, Jun 25 2021 *)
PROG
(PARI) exp(2*Euler) \\ Michel Marcus, Jun 25 2021
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Feb 01 2004
STATUS
approved