login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091724
Decimal expansion of e^(2*EulerGamma).
5
3, 1, 7, 2, 2, 1, 8, 9, 5, 8, 1, 2, 5, 4, 5, 0, 5, 2, 7, 7, 2, 7, 9, 1, 3, 4, 0, 9, 0, 6, 9, 4, 7, 4, 9, 7, 7, 1, 2, 2, 9, 5, 7, 7, 3, 7, 7, 7, 2, 3, 0, 0, 4, 5, 8, 5, 1, 4, 7, 7, 8, 2, 8, 8, 4, 1, 9, 2, 5, 2, 1, 4, 4, 1, 1, 6, 3, 8, 9, 4, 6, 3, 6, 6, 4, 6, 3, 8, 1, 7, 8, 7, 5, 0, 8, 4, 8, 9, 6, 6, 6, 5
OFFSET
1,1
LINKS
Jean-Marie De Koninck and Florian Luca, On the composition of the Euler function and the sum of divisors function, Colloquium Mathematicum, Vol. 108, No. 1 (2007), pp. 31-51.
Eric Weisstein's World of Mathematics, Exponential Integral.
FORMULA
Equals lim_{x -> 0} e^(2*ExpIntegralEi(-x))/x^2.
Equals A073004^2. - Michel Marcus, Jun 25 2021
Equals lim sup_{n->oo} H(n)/log_2(n)^2, where H(n) = A370689(n)/A370690(n) (De Koninck and Luca, 2007). - Amiram Eldar, Feb 27 2024
EXAMPLE
3.17221895812545052772791340906947497712295773777230...
MATHEMATICA
RealDigits[Exp[2*EulerGamma], 10, 100][[1]] (* Amiram Eldar, Jun 25 2021 *)
PROG
(PARI) exp(2*Euler) \\ Michel Marcus, Jun 25 2021
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Feb 01 2004
STATUS
approved