login
A091681
Decimal expansion of BesselJ(0,2).
22
2, 2, 3, 8, 9, 0, 7, 7, 9, 1, 4, 1, 2, 3, 5, 6, 6, 8, 0, 5, 1, 8, 2, 7, 4, 5, 4, 6, 4, 9, 9, 4, 8, 6, 2, 5, 8, 2, 5, 1, 5, 4, 4, 8, 2, 2, 1, 8, 6, 0, 7, 6, 0, 3, 1, 2, 8, 3, 4, 9, 7, 0, 6, 0, 1, 0, 8, 5, 3, 9, 5, 7, 7, 6, 8, 0, 1, 0, 7, 0, 5, 0, 1, 4, 8, 1, 1, 5, 1, 1, 8, 5, 3, 4, 2, 9, 3, 6, 6, 0, 4, 9
OFFSET
0,1
COMMENTS
The Pierce Expansion of this number is the squares > 1: 4,9,16,25,... - Franklin T. Adams-Watters, May 22 2006
LINKS
Eric Weisstein's World of Mathematics, Factorial Sums
Eric Weisstein's World of Mathematics, Pierce Expansion
FORMULA
Equals Sum_{k>=0} (-1)^k/(k!)^2.
Continued fraction expansion: BesselJ(0,2) = 1/(4 + 4/(8 + 9/(15 + ... + (n - 1)^2/(n^2 + 1 + ...)))). See A073701 for a proof. - Peter Bala, Feb 01 2015
Equals BesselI(0,2*i), where BesselI is the modified Bessel function of order 0. - Jianing Song, Sep 18 2021
EXAMPLE
0.223890779...
MATHEMATICA
RealDigits[N[BesselJ[0, 2], 250]][[1]] (* G. C. Greubel, Dec 26 2016 *)
PROG
(PARI) besselj(0, 2) \\ Charles R Greathouse IV, Feb 19 2014
CROSSREFS
Bessel function values: A334380 (J(0,1)), A334383 (J(0,sqrt(2))), this sequence (J(0,2)), A197036 (I(0,1)), A334381 (I(0,sqrt(2))), A070910 (I(0,2)).
Sequence in context: A046652 A319860 A300354 * A076541 A227380 A159789
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jan 28 2004
STATUS
approved