1,2
Table of n, a(n) for n=1..111.
Abramowitz and Stegun Handbook of Mathematical functions, Chapter 9.6
Eric Weisstein, Modified Bessel Function of the First Kind, MathWorld
I_0(1)= sum_{k=0..infinity} 1/(4^k*k!^2) = sum_{k>=0} 1/A002454(k).
Equals (1/Pi)*integral(t=0..Pi) exp(cos(t)) dt.
1.26606587...
BesselI(0, 1) ; evalf(%) ;
(PARI) besseli(0, 1) \\ Charles R Greathouse IV, Feb 19 2014
Cf. A242282.
Sequence in context: A107495 A019716 A106152 * A110666 A200485 A201318
Adjacent sequences: A197033 A197034 A197035 * A197037 A197038 A197039
cons,easy,nonn
R. J. Mathar, Oct 08 2011
approved