login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091626
Number of ordered integer pairs (b,c) with 0 <= b, c <= n such that both roots of x^2+bx+c=0 are integers.
4
1, 2, 4, 6, 9, 11, 14, 16, 19, 22, 25, 27, 31, 33, 36, 39, 43, 45, 49, 51, 55, 58, 61, 63, 68, 71, 74, 77, 81, 83, 88, 90, 94, 97, 100, 103, 109, 111, 114, 117, 122, 124, 129, 131, 135, 139, 142, 144, 150, 153, 157, 160, 164, 166, 171, 174, 179, 182, 185, 187
OFFSET
0,2
COMMENTS
Also number of ordered pairs of nonnegative integers (i, j) such that i+j <= n and i*j <= n. - Seiichi Manyama, Sep 04 2021
LINKS
Eric Weisstein's World of Mathematics, Quadratic Equation
FORMULA
a(n) = a(n-1) + ceiling(tau(n)/2) + 1, n>1. - Vladeta Jovovic, Jun 12 2004
a(n) = n + floor(sqrt(n))/2 + A006218(n)/2, n>0. - Griffin N. Macris, Jun 14 2016
EXAMPLE
The six quadratics for a(3)=6 and their roots are as follows:
x^2 + 0*x + 0; x=0.
x^2 + 1*x + 0; x=0, x=-1.
x^2 + 2*x + 0; x=0, x=-2.
x^2 + 2*x + 1; x=-1.
x^2 + 3*x + 0; x=0, x=-3.
x^2 + 3*x + 2; x=-1, x=-2.
MATHEMATICA
a[n_] := a[n] = a[n-1] + Ceiling[ DivisorSigma[0, n]/2] + 1; a[0]=1; a[1]=2; Table[a[n], {n, 0, 59}] (* Jean-François Alcover, Nov 08 2012, after Vladeta Jovovic *)
PROG
(PARI) a(n) = sum(i=0, n, sum(j=i, n-i, i*j<=n)); \\ Seiichi Manyama, Sep 04 2021
(Python)
from math import isqrt
def A091626(n):
m = isqrt(n)
return 1 if n == 0 else n+sum(n//k for k in range(1, m+1))-m*(m-1)//2 # Chai Wah Wu, Oct 07 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jan 24 2004
STATUS
approved