login
A091430
Number of Hamiltonian symmetric trivalent (or cubic) connected graphs on 2n nodes (the Foster census).
2
0, 1, 1, 1, 0, 0, 1, 1, 1, 2, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 3, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 2, 2, 0, 1, 1, 0, 1, 1, 3, 1, 0, 0, 2, 1, 0, 1, 2, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 1, 1, 0, 0, 1, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 0, 4, 0, 1, 0, 0, 3, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 3, 1, 3, 1, 3, 0, 0, 0, 0, 2, 0, 0, 3, 1, 0, 0, 1, 1, 0, 1, 4, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 1
OFFSET
1,10
COMMENTS
a(n) = A059282(n) for n <= 5000 except a(5) and a(14) which are one less. This corresponds to the fact that the Petersen and Coxeter graphs are non-Hamiltonian. [Comment updated by Marston Conder, May 08 2017. See comment in A059282 for further information. - N. J. A. Sloane, May 09 2017]
LINKS
Eric Weisstein's World of Mathematics, Symmetric Cubic Graph
CROSSREFS
Cf. A059282.
Sequence in context: A116377 A131964 A356241 * A362221 A260728 A065339
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jan 06 2004
EXTENSIONS
Corrected and extended by N. J. A. Sloane, May 09 2017, using Marston Conder's b-file
STATUS
approved