login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065339 Number of primes congruent to 3 modulo 4 dividing n (with multiplicity). 19
0, 0, 1, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 2, 1, 1, 1, 0, 0, 3, 1, 0, 1, 1, 0, 2, 0, 1, 2, 0, 1, 1, 0, 0, 2, 1, 1, 2, 1, 1, 1, 2, 0, 1, 0, 0, 3, 1, 1, 2, 0, 1, 1, 0, 1, 3, 0, 0, 2, 1, 0, 2, 1, 1, 2, 0, 0, 1, 1, 2, 1, 1, 0, 4, 0, 1, 2, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 1, 0, 2, 3, 0, 0, 1, 1, 0, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,9

COMMENTS

(2^A007814(n)) * (3^a(n)) = A065338(n).

LINKS

T. D. Noe, Table of n, a(n) for n=1..10000

FORMULA

a(n) = A001222(n) - A007814(n) - A083025(n).

From Antti Karttunen, Aug 14 2015: (Start)

a(1) = a(2) = 0; thereafter, if n is even, a(n) = a(n/2), otherwise a(n) = ((A020639(n) mod 4)-1)/2 + a(n/A020639(n)). [Where A020639(n) gives the smallest prime factor of n.]

Other identities and observations. For all n >= 1:

a(n) = A007949(A065338(n)).

a(n) = A001222(A097706(n)).

a(n) >= A260728(n). [See A260730 for the positions of differences.]

(End)

MAPLE

A065339 := proc(n)

    a := 0 ;

    for f in ifactors(n)[2] do

        if op(1, f) mod 4 = 3 then

            a := a+op(2, f) ;

        end if;

    end do:

    a ;

end proc: # R. J. Mathar, Dec 16 2011

MATHEMATICA

f[n_]:=Plus@@Last/@Select[If[n==1, {}, FactorInteger[n]], Mod[#[[1]], 4]==3&]; Table[f[n], {n, 100}] (* Ray Chandler, Dec 18 2011 *)

PROG

(Haskell)

a065339 1 = 0

a065339 n = length [x | x <- a027746_row n, mod x 4 == 3]

-- Reinhard Zumkeller, Jan 10 2012

(PARI) A065339(n)=sum(i=1, #n=factor(n)~, if(n[1, i]%4==3, n[2, i]))  \\ M. F. Hasler, Apr 16 2012

(Scheme, two variants using memoization-macro definec)

(definec (A065339 n) (cond ((< n 3) 0) ((even? n) (A065339 (/ n 2))) (else (+ (/ (- (modulo (A020639 n) 4) 1) 2) (A065339 (A032742 n))))))

(definec (A065339 n) (cond ((< n 3) 0) ((even? n) (A065339 (/ n 2))) ((= 1 (modulo (A020639 n) 4)) (A065339 (A032742 n))) (else (+ (A067029 n) (A065339 (A028234 n))))))

;; Antti Karttunen, Aug 14 2015

CROSSREFS

Cf. A001222, A007814, A065338, A005091, A007949, A083025 (analogous for 4k+1 primes), A097706.

Cf. A020639, A027746, A028234, A032742, A067029, A260728, A260730.

Sequence in context: A131964 A091430 A260728 * A122434 A141571 A164067

Adjacent sequences:  A065336 A065337 A065338 * A065340 A065341 A065342

KEYWORD

nonn

AUTHOR

Reinhard Zumkeller, Oct 29 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 17:48 EDT 2019. Contains 323395 sequences. (Running on oeis4.)