login
A090833
Numbers n such that 6n+5, 6n+11, 6n+17, 6n+23 are consecutive primes or 6n+1, 6n+7, 6n+13, 6n+19 are consecutive primes.
9
41, 290, 550, 850, 896, 1051, 1060, 2106, 2241, 2456, 2631, 2650, 2911, 3035, 3245, 3886, 4361, 5015, 5105, 8935, 9346, 10366, 10615, 11890, 12586, 12925, 13131, 13485, 13796, 13905, 14071, 14850, 14896, 15215, 15736, 15876, 15985, 17451, 17560
OFFSET
1,1
LINKS
MATHEMATICA
Select[Range[20000], (PrimeQ[6#+5]&&Differences[NestList[ NextPrime[ #]&, 6 #+5, 3]] =={6, 6, 6})||(PrimeQ[6#+1]&&Differences[NestList[NextPrime[#]&, 6 #+1, 3]]=={6, 6, 6})&] (* Harvey P. Dale, Sep 23 2016 *)
PROG
(PARI) p=2; q=3; r=5; forprime(s=7, 1e5, if(s-p==18&&s-q==12&&s-r==6, print1(p\6", ")); p=q; q=r; r=s) \\ Charles R Greathouse IV, Dec 27 2011
KEYWORD
easy,nonn
AUTHOR
Pierre CAMI, Dec 09 2003
EXTENSIONS
a(19) from Charles R Greathouse IV, Dec 27 2011
STATUS
approved