login
A090837
Primes p such that p, p+6, p+12, p+18 are consecutive primes and p = 6*k+1 for some k.
9
1741, 3301, 5101, 6361, 15901, 18211, 19471, 30091, 30631, 53611, 63691, 71341, 77551, 80911, 83431, 89101, 91291, 95911, 105361, 105601, 108631, 119551, 120811, 130681, 141061, 144241, 152941, 172981, 186871, 206191, 218131, 228841, 230221, 252151, 263071, 280921, 285451
OFFSET
1,1
LINKS
EXAMPLE
1741, 1747, 1753, 1759 are consecutive primes, 1747 = 1741 + 6, 1753 = 1741 + 12, 1759 = 1741 + 18 and 1741 = 6 * 290 + 1.
MAPLE
filter:= p -> isprime(p) and nextprime(p) = p+6 and nextprime(p+6)=p+12 and nextprime(p+12)=p+18:
select(filter, [seq(i, i=1..10^6, 6)]); # Robert Israel, Nov 11 2020
PROG
(PARI) isok(p) = my(q, r, s); isprime(p) && ((p % 6) == 1) && ((q=nextprime(p+1)) == p+6) && ((r=nextprime(q+1)) == p+12) && ((s=nextprime(r+1)) == p+18); \\ Michel Marcus, Sep 20 2019
KEYWORD
easy,nonn
AUTHOR
Pierre CAMI, Dec 09 2003
EXTENSIONS
More terms from Michel Marcus, Sep 20 2019
STATUS
approved