This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090362 Satisfies A^6 = BINOMIAL(A)^5 and also equals A090358^5. 4
 1, 5, 40, 460, 7220, 148276, 3831760, 120333680, 4460572870, 190679906990, 9230084185456, 498734395394840, 29740372199558420, 1939241402832412180, 137222625361036807760, 10470376552560151801616, 856818090423771231257245 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS See comments in A090358. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..320 FORMULA G.f.: A(x)^6 = A(x/(1-x))^5/(1-x)^5. a(n) ~ (n-1)! / (6 * (log(6/5))^(n+1)). - Vaclav Kotesovec, Nov 19 2014 From Peter Bala, May 26 2015: (Start) O.g.f. A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ), where b(n) = Sum_{k = 1..n} k!*Stirling2(n,k)*5^k = A094418(n). BINOMIAL(A(x)) = exp( Sum_{n >= 1} c(n)*x^n/n ) where c(n) = (-1)^n*Sum_{k = 1..n} k!*Stirling2(n,k)*(-6)^k. A(x) = B(x)^5 and BINOMIAL(A(x)) = B(x)^6 where B(x) = 1 + x + 6*x^2 + 66*x^3 + 1071*x^4 + ... is the o.g.f. for A090358. See also A019538. (End) PROG (PARI) {a(n)=local(A); if(n<0, 0, A=1+x+x*O(x^n); for(k=1, n, B=subst(A, x, x/(1-x))/(1-x)+x*O(x^n); A=A-A^6+B^5); polcoeff(A, n, x))} CROSSREFS Cf. A090358; A019538, A094418. Sequence in context: A052868 A292405 A094574 * A201366 A281160 A282476 Adjacent sequences:  A090359 A090360 A090361 * A090363 A090364 A090365 KEYWORD nonn,easy AUTHOR Paul D. Hanna, Nov 26 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 23:02 EDT 2018. Contains 316431 sequences. (Running on oeis4.)