login
A090364
Convolution of this sequence with its binomial transform equals the second iteration of the binomial transform upon this sequence.
0
1, 1, 3, 13, 79, 633, 6363, 77301, 1102791, 18070705, 334337203, 6890754093, 156506187679, 3882859101289, 104459523189387, 3028574143010661, 94129826448658551, 3121967981131094049, 110053554178639814499
OFFSET
0,3
FORMULA
G.f.: A(x) = A(x/(1-2x))/A(x/(1-x))*(1-x)/(1-2x).
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=1+x+x*O(x^n); for(k=1, n, B=subst(A, x, x/(1-x))/(1-x)+x*O(x^n); C=subst(B, x, x/(1-x))/(1-x)+x*O(x^n); A=A-A*B+C); polcoeff(A, n, x))}
CROSSREFS
Sequence in context: A261601 A125659 A010844 * A112935 A258377 A335636
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 26 2003
STATUS
approved