login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090280
"Plain Bob Minimus" in bell-ringing is a sequence of permutations p_1=(1,2,3,4), p_2=(2,1,4,3), .. which runs through all permutations of {1,2,3,4} with period 24; sequence gives number in position 4 of n-th permutation.
1
4, 3, 3, 1, 1, 2, 2, 4, 2, 4, 4, 1, 1, 3, 3, 2, 3, 2, 2, 1, 1, 4, 4, 3, 4, 3, 3, 1, 1, 2, 2, 4, 2, 4, 4, 1, 1, 3, 3, 2, 3, 2, 2, 1, 1, 4, 4, 3, 4, 3, 3, 1, 1, 2, 2, 4, 2, 4, 4, 1, 1, 3, 3, 2, 3, 2, 2, 1, 1, 4, 4, 3, 4, 3, 3, 1, 1, 2, 2, 4, 2, 4, 4, 1, 1, 3, 3, 2, 3, 2, 2, 1, 1, 4, 4, 3, 4, 3, 3
OFFSET
1,1
LINKS
FORMULA
Period 24.
From Chai Wah Wu, Jul 17 2016: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7) - a(n-8) + a(n-9) - a(n-10) + a(n-11) - a(n-12) + a(n-13) - a(n-14) + a(n-15) - a(n-16) + a(n-17) - a(n-18) + a(n-19) - a(n-20) + a(n-21) - a(n-22) + a(n-23) for n > 23.
G.f.: x*(-3*x^22 - x^21 - 3*x^20 + 2*x^19 - 3*x^18 + x^17 - 3*x^16 - 2*x^14 - x^13 - 2*x^12 + x^11 - 2*x^10 - 2*x^9 - 2*x^8 - 4*x^6 + 2*x^5 - 4*x^4 + 3*x^3 - 4*x^2 + x - 4)/((x - 1)*(x^2 + 1)*(x^4 + 1)*(x^2 - x + 1)*(x^2 + x + 1)*(x^4 - x^2 + 1)*(x^8 - x^4 + 1)). (End)
MAPLE
ring:= proc(k) option remember; local l, a, b, c, swap, h; l:= [1, 2, 3, 4]; swap:= proc(i, j) h:=l[i]; l[i]:=l[j]; l[j]:=h end; a:= proc() swap(1, 2); swap(3, 4); l[k] end; b:= proc() swap(2, 3); l[k] end; c:= proc() swap(3, 4); l[k] end; [l[k], seq([seq([a(), b()][], j=1..3), a(), c()][], i=1..3)] end: a:= n-> ring(4)[modp(n-1, 24)+1]: seq(a(n), n=1..99); # Alois P. Heinz, Aug 19 2008
MATHEMATICA
ring[k_] := ring[k] = Module[{l, a, b, c, swap, h}, l = Range[4]; swap[i_, j_] := (h = l[[i]]; l[[i]] = l[[j]]; l[[j]] = h); a := (swap[1, 2]; swap[3, 4]; l[[k]]); b := (swap[2, 3]; l[[k]]); c := (swap[3, 4]; l[[k]] ); Join[{l[[k]]}, Flatten @ Table[ Join[ Flatten @ Table[{a, b}, {j, 1, 3}], {a}, {c}], {i, 1, 3}]]] ; a[n_] := ring[4][[Mod[n-1, 24] + 1]]; Table[a[n], {n, 1, 99}] (* Jean-François Alcover, Mar 18 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 24 2004
STATUS
approved