login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090279 "Plain Bob Minimus" in bell-ringing is a sequence of permutations p_1=(1,2,3,4), p_2=(2,1,4,3), .. which runs through all permutations of {1,2,3,4} with period 24; sequence gives number in position 3 of n-th permutation. 0
3, 4, 1, 3, 2, 1, 4, 2, 4, 2, 1, 4, 3, 1, 2, 3, 2, 3, 1, 2, 4, 1, 3, 4, 3, 4, 1, 3, 2, 1, 4, 2, 4, 2, 1, 4, 3, 1, 2, 3, 2, 3, 1, 2, 4, 1, 3, 4, 3, 4, 1, 3, 2, 1, 4, 2, 4, 2, 1, 4, 3, 1, 2, 3, 2, 3, 1, 2, 4, 1, 3, 4, 3, 4, 1, 3, 2, 1, 4, 2, 4, 2, 1, 4, 3, 1, 2, 3, 2, 3, 1, 2, 4, 1, 3, 4, 3, 4, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..99.

R. Bailey, Change Ringing Resources

David Joyner, Application: Bell Ringing

Index entries for linear recurrences with constant coefficients, signature (1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1).

Index entries for sequences related to bell ringing

FORMULA

Period 24.

From Chai Wah Wu, Jul 17 2016: (Start)

a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7) - a(n-8) + a(n-9) - a(n-10) + a(n-11) - a(n-12) + a(n-13) - a(n-14) + a(n-15) - a(n-16) + a(n-17) - a(n-18) + a(n-19) - a(n-20) + a(n-21) - a(n-22) + a(n-23) for n > 23.

G.f.: x*(-4*x^22 + x^21 - 2*x^20 - 2*x^19 - x^17 - 2*x^16 - 3*x^14 + x^13 - 2*x^12 - x^11 - 3*x^10 + 2*x^9 - 4*x^8 - 2*x^6 - 2*x^5 + x^4 - 3*x^3 - x - 3)/((x - 1)*(x^2 + 1)*(x^4 + 1)*(x^2 - x + 1)*(x^2 + x + 1)*(x^4 - x^2 + 1)*(x^8 - x^4 + 1)). (End)

MAPLE

ring:= proc(k) option remember; local l, a, b, c, swap, h; l:= [1, 2, 3, 4]; swap:= proc(i, j) h:=l[i]; l[i]:=l[j]; l[j]:=h end; a:= proc() swap(1, 2); swap(3, 4); l[k] end; b:= proc() swap(2, 3); l[k] end; c:= proc() swap(3, 4); l[k] end; [l[k], seq([seq([a(), b()][], j=1..3), a(), c()][], i=1..3)] end: a:= n-> ring(3)[modp(n-1, 24)+1]: seq(a(n), n=1..99); # Alois P. Heinz, Aug 19 2008

MATHEMATICA

ring[k_] := ring[k] = Module[{l, a, b, c, swap, h}, l = Range[4]; swap[i_, j_] := (h = l[[i]]; l[[i]] = l[[j]]; l[[j]] = h); a := (swap[1, 2]; swap[3, 4]; l[[k]]); b := (swap[2, 3]; l[[k]]); c := (swap[3, 4]; l[[k]] ); Join[{l[[k]]}, Flatten @ Table[ Join[ Flatten @ Table[{a, b}, {j, 1, 3}], {a}, {c}], {i, 1, 3}]]]; a[n_] := ring[3][[Mod[n-1, 24]+1]]; Table[a[n], {n, 1, 99}] (* Jean-Fran├žois Alcover, Mar 18 2017, after Alois P. Heinz *)

CROSSREFS

Cf. A090277-A090284.

Sequence in context: A021297 A124909 A281098 * A101667 A117378 A278518

Adjacent sequences:  A090276 A090277 A090278 * A090280 A090281 A090282

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jan 24 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 12 01:08 EST 2017. Contains 295936 sequences.