

A089977


Expansion of 1/((12*x)*(1+x+2*x^2)).


6



1, 1, 1, 5, 9, 13, 33, 69, 121, 253, 529, 1013, 2025, 4141, 8193, 16293, 32857, 65629, 130801, 262229, 524745, 1047949, 2096865, 4195845, 8387641, 16775101, 33558481, 67109045, 134209449, 268443373, 536879553, 1073717349, 2147490841
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

Row sums of the Riordan array (1,x(1+4x^2)).  Paul Barry, Jan 12 2006
6*a(n3) is the number of distinct nonbacktracking paths of length n on a unit cube which start on a given vertex and end on the same one (if n is even) or the opposite one (if n is odd). E.g., a(7)=69 because a(7)=a(6)+4*a(4)=33+4*9=69. a(3)=5 because there are 6*a(63)=6*5=30 nonbacktracking paths of length 6 on a unit cube that end on the same vertex (6 is even); if we name the vertices of a unit cube ABCDEFGH in the order of x+2y+4z, such paths starting from A are ABDCGEA, ABDHFBA, ABDHFEA, ABDHGCA, ABDHGDA; the remaining 25 can be derived from these 5 reflecting them about the ABGH plane and rotating the resulting 10 around the AH axis by 120 and 120 degrees.  Michal Kaczmarczyk, Apr 24 2006
The compositions of n in which each natural number is colored by one of p different colors are called pcolored compositions of n. For n>=3, 5*a(n3) equals the number of 5colored compositions of n with all parts >=3, such that no adjacent parts have the same color.  Milan Janjic, Nov 27 2011
a(n+2) equals the number of words of length n on alphabet {0,1,2,3,4}, having at least two zeros between every two successive nonzero letters.  Milan Janjic, Feb 07 2015
Number of compositions of n into one sort of part 1 and four sorts of part 3 (the g.f. is 1/(1x4*x^3) ).  Joerg Arndt, Feb 07 2015


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,4).


FORMULA

a(n) = Sum_{k=0..floor(n/2)} C(n2*k, k)*4^k.
a(n) = 2^(n1)+2^(n/2)*(cos((n+2)*arctan(sqrt(7)/7)+Pi*n/2)/4+5*sqrt(7)*sin((n+2)*arctan(sqrt(7)/7)+Pi*n/2)/28).
a(n) = Sum_{k=0..n} C(k, floor((nk)/2))2^(nk)*(1+(1)^(nk))/2.  Paul Barry, Jan 12 2006
a(n) = a(n1) + 4*a(n3) for n>=3, a(0)=1, a(1)=1, a(2)=1.  Michal Kaczmarczyk, Apr 24 2006
a(n) = 2^(n1) + A110512(n)/2.  R. J. Mathar, Aug 23 2011
G.f.: Q(0)/2, where Q(k) = 1 + 1/(1  x*(4*k+1 + 4*x^2)/( x*(4*k+3 + 4*x^2) + 1/Q(k+1) )); (continued fraction).  Sergei N. Gladkovskii, Sep 08 2013
a(n) = hypergeom([1/3n/3,2/3n/3,n/3],[1/2n/2,n/2],27).  Peter Luschny, Feb 07 2015


MAPLE

seq(add(binomial(n2*k, k)*4^k, k=0..floor(n/3)), n=0..32); # Zerinvary Lajos, Apr 03 2007


MATHEMATICA

Table[HypergeometricPFQ[{1/3n/3, 2/3n/3, n/3}, {1/2n/2, n/2}, 27], {n, 0, 32}] (* Peter Luschny, Feb 07 2015 *)
CoefficientList[Series[1/((1  2*x)*(1 + x + 2*x^2)), {x, 0, 50}], x] (* G. C. Greubel, Apr 27 2017 *)


PROG

(PARI) Vec(1/((12*x)*(1+x+2*x^2)) + O(x^50)) \\ Michel Marcus, Feb 07 2015


CROSSREFS

Cf. A084386, A077949, A000930.
Sequence in context: A170896 A257171 A233973 * A024728 A024950 A180514
Adjacent sequences: A089974 A089975 A089976 * A089978 A089979 A089980


KEYWORD

easy,nonn


AUTHOR

Paul Barry, Nov 18 2003


STATUS

approved



