login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077949 Expansion of 1/(1-x-2*x^3). 15
1, 1, 1, 3, 5, 7, 13, 23, 37, 63, 109, 183, 309, 527, 893, 1511, 2565, 4351, 7373, 12503, 21205, 35951, 60957, 103367, 175269, 297183, 503917, 854455, 1448821, 2456655, 4165565, 7063207, 11976517, 20307647, 34434061, 58387095, 99002389, 167870511, 284644701 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Row sums of the Riordan array (1, x*(1+2*x^2)). - Paul Barry, Jan 12 2006

The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=3, 3*a(n-3) equals the number of 3-colored compositions of n with all parts >=3, such that no adjacent parts have the same color. - Milan Janjic, Nov 27 2011

Number of compositions of n into parts 1 and two sorts of parts 2. - Joerg Arndt, Aug 29 2013

a(n+2) equals the number of words of length n on alphabet {0,1,2}, having at least two zeros between every two successive nonzero letters. - Milan Janjic, Feb 07 2015

Number of pairs of rabbits when there are 2 pairs per litter and offspring reach parenthood after 3 gestation periods; a(n) = a(n-1) + 2*a(n-3), with a(0) = a(1) = a(2) = 1. - Robert FERREOL, Oct 27 2018

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,2).

FORMULA

a(n) = Sum_{k=0..floor(n/2)} C(n-2k, k)*2^k. - Paul Barry, Nov 18 2003

a(n) = Sum_{k=0..n} C(k, floor((n-k)/2))*2^((n-k)/2)*(1+(-1)^(n-k))/2. - Paul Barry, Jan 12 2006

a(n) = term (1,1) in the 3x3 matrix [1,1,0; 0,0,1; 2,0,0]^n. - Alois P. Heinz, Aug 16 2008

G.f.: Q(0)/2, where Q(k) = 1 + 1/(1 - x*(2*k+1 + 2*x^2)/( x*(2*k+2 + 2*x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 29 2013

MAPLE

a:= n-> (<<1|1|0>, <0|0|1>, <2|0|0>>^n)[1, 1]:

seq(a(n), n=0..40); # Alois P. Heinz, Aug 16 2008

MATHEMATICA

CoefficientList[Series[1/(1-x-2*x^3), {x, 0, 50}], x] (* Jean-François Alcover, Mar 11 2014 *)

LinearRecurrence[{1, 0, 2}, {1, 1, 1}, 50] (* Robert G. Wilson v, Jul 12 2014 *)

PROG

(PARI) Vec(1/(1-x-2*x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 23 2012

(Magma) [n le 3 select 1 else Self(n-1)+2*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Mar 13 2014

(Sage) (1/(1-x-2*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 22 2019

(GAP) a:=[1, 1, 1];; for n in [4..30] do a[n]:=a[n-1]+2*a[n-3]; od; a; # G. C. Greubel, Jun 22 2019

CROSSREFS

Unsigned version of A077974. Cf. A003229.

Sequence in context: A125272 A127443 A003229 * A077974 A126273 A007658

Adjacent sequences: A077946 A077947 A077948 * A077950 A077951 A077952

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Nov 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 18:02 EST 2022. Contains 358588 sequences. (Running on oeis4.)