

A077949


Expansion of 1/(1x2*x^3).


10



1, 1, 1, 3, 5, 7, 13, 23, 37, 63, 109, 183, 309, 527, 893, 1511, 2565, 4351, 7373, 12503, 21205, 35951, 60957, 103367, 175269, 297183, 503917, 854455, 1448821, 2456655, 4165565, 7063207, 11976517, 20307647, 34434061, 58387095, 99002389, 167870511, 284644701
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

Row sums of the Riordan array (1, x(1+2x^2));  Paul Barry, Jan 12 2006
The compositions of n in which each natural number is colored by one of p different colors are called pcolored compositions of n. For n>=3, 3*a(n3) equals the number of 3colored compositions of n with all parts >=3, such that no adjacent parts have the same color.  Milan Janjic, Nov 27 2011
Number of compositions of n into parts 1 and two sorts of parts 2.  Joerg Arndt, Aug 29 2013


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index to sequences with linear recurrences with constant coefficients, signature (1,0,2)


FORMULA

a(n) = sum{k=0..floor(n/2), C(n2k, k)2^k}.  Paul Barry, Nov 18 2003
a(n) = sum{k=0..n, C(k, floor((nk)/2))2^((nk)/2)(1+(1)^(nk))/2}.  Paul Barry, Jan 12 2006
a(n) = term (1,1) in the 3x3 matrix [1,1,0; 0,0,1; 2,0,0]^n.  Alois P. Heinz, Aug 16 2008
G.f.: Q(0)/2, where Q(k) = 1 + 1/(1  x*(2*k+1 + 2*x^2)/( x*(2*k+2 + 2*x^2) + 1/Q(k+1) )); (continued fraction).  Sergei N. Gladkovskii, Aug 29 2013


MAPLE

a:= n> (<<110>, <001>, <200>>^n)[1, 1]: seq(a(n), n=0..40); # Alois P. Heinz, Aug 16 2008


MATHEMATICA

CoefficientList[Series[1/(1x2*x^3), {x, 0, 40}], x] (* JeanFrançois Alcover, Mar 11 2014 *)
LinearRecurrence[{1, 0, 2}, {1, 1, 1}, 42] (* Robert G. Wilson v, Jul 12 2014 *)


PROG

(PARI) Vec(1/(1x2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
(MAGMA) [n le 3 select 1 else Self(n1)+2*Self(n3): n in [1..40]]; // Vincenzo Librandi, Mar 13 2014


CROSSREFS

Unsigned version of A077974. Cf. A003229.
Sequence in context: A127443 A003229 * A077974 A126273 A007658 A154321
Adjacent sequences: A077946 A077947 A077948 * A077950 A077951 A077952


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, Nov 17 2002


STATUS

approved



