OFFSET
0,3
COMMENTS
a(n) = (A038192(n) - 3)/12 = (A038183(n) - 1)/4, reflecting the fact that, if you look at each row of the Pascal triangle's parity as a binary number (cf. A001317), then the numbers in odd rows are thrice the numbers in even rows.
Conjecture: a(2^k) = 2^(2^(k+1)-2). [This conjecture is true. - Vladimir Shevelev, Nov 28 2010]
Conjectures: lim(n->inf, a(2n+1)/a(2n)) = 5, lim(n->inf, a(4n+2)/a(4n+1)) = 17/5, lim(n->inf, a(8n+4)/a(8n+3)) = 257/85 etc. [This follows from the formula, for n>=0, t>=1: ( 4*a(2^t*n+2^(t-1))+1 )/( 4*a(2^t*n+2^(t-1)-1)+1 ) = 3*F_t/(F_t-2), where F_t= A000215(t) - Vladimir Shevelev, Nov 28 2010]
LINKS
Vladimir Shevelev, On Stephan's conjectures concerning Pascal triangle modulo 2, arXiv:1011.6083 [math.NT], 2010-2012.
MATHEMATICA
a1317[n_] := Sum[2^k Mod[Binomial[n, k], 2] , {k, 0, n}];
a[n_] := (a1317[2n] - 1)/4;
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jan 18 2019 *)
PROG
(PARI) a(n)=(sum(k=0, 2*n+1, (binomial(2*n+1, k)%2)*2^k)-3)/12
(Python)
def A089893(n): return sum((bool(~(m:=n<<1)&m-k)^1)<<k for k in range((n<<1)+1))-1>>2 # Chai Wah Wu, May 02 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Jan 10 2004
STATUS
approved