login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089893
a(n) = (A001317(2n)-1)/4.
4
0, 1, 4, 21, 64, 321, 1092, 5461, 16384, 81921, 278532, 1392661, 4210752, 21053761, 71582788, 357913941, 1073741824, 5368709121, 18253611012, 91268055061, 275951648832, 1379758244161, 4691178030148, 23455890150741
OFFSET
0,3
COMMENTS
a(n) = (A038192(n) - 3)/12 = (A038183(n) - 1)/4, reflecting the fact that, if you look at each row of the Pascal triangle's parity as a binary number (cf. A001317), then the numbers in odd rows are thrice the numbers in even rows.
Conjecture: a(2^k) = 2^(2^(k+1)-2). [This conjecture is true. - Vladimir Shevelev, Nov 28 2010]
Conjectures: lim(n->inf, a(2n+1)/a(2n)) = 5, lim(n->inf, a(4n+2)/a(4n+1)) = 17/5, lim(n->inf, a(8n+4)/a(8n+3)) = 257/85 etc. [This follows from the formula, for n>=0, t>=1: ( 4*a(2^t*n+2^(t-1))+1 )/( 4*a(2^t*n+2^(t-1)-1)+1 ) = 3*F_t/(F_t-2), where F_t= A000215(t) - Vladimir Shevelev, Nov 28 2010]
LINKS
Vladimir Shevelev, On Stephan's conjectures concerning Pascal triangle modulo 2, arXiv:1011.6083 [math.NT], 2010-2012.
MATHEMATICA
a1317[n_] := Sum[2^k Mod[Binomial[n, k], 2] , {k, 0, n}];
a[n_] := (a1317[2n] - 1)/4;
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jan 18 2019 *)
PROG
(PARI) a(n)=(sum(k=0, 2*n+1, (binomial(2*n+1, k)%2)*2^k)-3)/12
(Python)
def A089893(n): return sum((bool(~(m:=n<<1)&m-k)^1)<<k for k in range((n<<1)+1))-1>>2 # Chai Wah Wu, May 02 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Jan 10 2004
STATUS
approved