login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089382
Total number of triangles in all the dissections of a convex (n+3)-gon by nonintersecting diagonals.
1
1, 4, 20, 104, 553, 2984, 16272, 89440, 494681, 2749772, 15348372, 85967112, 482927985, 2719787856, 15351385152, 86816721792, 491819758417, 2790451952660, 15854070902964, 90187514559208, 513619224125657, 2928073006131704, 16708228671139600, 95423104768226144, 545408567460801513
OFFSET
0,2
LINKS
FORMULA
G.f.: (3-z+q)*(1+z-q)^2/(64*q*z^2), where q = sqrt(1-6*z+z^2).
Recurrence: n*(n+2)*a(n) = (8*n^2 + 7*n - 3)*a(n-1) - (13*n^2 - 17*n - 6)*a(n-2) + 2*(n-3)*(n+1)*a(n-3). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ (1 + sqrt(2))^(2*n+3) / (2^(11/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Oct 14 2012, simplified Dec 24 2017
a(n) = Sum_{j=0..n}((-1)^j*2^(n-j)*binomial(n+3,j)*binomial(2*n-j+2,n+2)). - Vladimir Kruchinin, Apr 08 2016
EXAMPLE
a(1)=4 because in the three dissections of a square we have altogether four triangles: no triangle in the "no-diagonals" dissection and two triangles in each of the dissections by one of the two diagonals of the square.
MATHEMATICA
Table[SeriesCoefficient[(3-x+Sqrt[1-6*x+x^2])*(1+x-Sqrt[1-6*x+x^2])^2/(64*Sqrt[1-6*x+x^2]*x^2), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 14 2012 *)
PROG
(PARI) x='x+O('x^66); q = sqrt(1-6*x+x^2); Vec((3-x+q)*(1+x-q)^2/(64*q*x^2)) \\ Joerg Arndt, May 10 2013
(Maxima)
a(n):=sum((-1)^j*2^(n-j)*binomial(n+3, j)*binomial(2*n-j+2, n+2), j, 0, n); /* Vladimir Kruchinin, Apr 08 2016 */
CROSSREFS
Cf. A001003.
Sequence in context: A120978 A035028 A104550 * A291089 A192619 A026305
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 28 2003
STATUS
approved