login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089385 Expansion of Product_{k>0} (1 + x^k) * (1 - x^(2*k)) / (1 + x^(4*k)) in powers of x. 1
1, 1, 0, 1, -1, -1, 1, -1, 0, 0, 0, 0, -1, -1, -1, 0, 1, 1, -1, 0, -1, 0, 0, -1, 1, 0, 0, 0, 0, -1, 0, 0, 1, 1, 0, 1, -1, -1, 1, -1, 0, 1, 0, 1, -1, 0, 0, 0, 1, 1, 0, 1, -1, -1, 1, 0, 1, 0, 0, 0, -1, -1, 0, -1, 2, 2, 0, 1, -1, -1, 0, -1, 1, 1, 0, 0, -1, -1, 0, 0, 2, 1, -1, 1, -2, -1, 0, -1, 1, 1, -1, 1, -1, -1, 0, -1, 2, 2, 0, 1, -2, -2, 1, -2, 1, 1, 0, 1, -2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,65

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

|a(n)| < 2 if n < 64.

A089385 and A000041 have the same parity. - Vladeta Jovovic, Dec 31 2003

LINKS

Table of n, a(n) for n=0..108.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q^(1/24) * eta(q^2)^2 * eta(q^4) / (eta(q) * eta(q^8)) in powers of q. - Michael Somos, Sep 30 2011

Expansion of f(x) * chi(x^2) = psi(x) * chi(-x^4) = phi(-x^4) * chi(x) where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Sep 30 2011

G.f.: Product_{k>0} (1 + x^k) * (1 - x^(2*k)) / (1 + x^(4*k)). - Michael Somos, Sep 30 2011

G.f.: Product_{k>=1} Sum_{n>=0} b(n)*x^(kn), where b(n)=-1 if n is congruent to 2, 3, 4, or 5 modulo 8, b(n)=+1 otherwise.

G.f.: Product_{k>0} (1-x^k)*(1+x^k)^2/(1+x^(4*k)). - Vladeta Jovovic, Dec 31 2003

Euler transform of period 8 sequence [1, -1, 1, -2, 1, -1, 1, -1, ...]. - Vladeta Jovovic, Aug 20 2004

A040051(n) == a(n) (mod 2).

EXAMPLE

1 + x + x^3 - x^4 - x^5 + x^6 - x^7 - x^12 - x^13 - x^14 + x^16 + ...

1/q + q^23 + q^71 - q^95 - q^119 + q^143 - q^167 - q^287 - q^311 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ Product[ (1 + x^k) (1 - x^(2 k)) / (1 + x^(4 k)), {k, n}], {x, 0, n}]  (* Michael Somos, Sep 30 2011 *)

a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ -x, x] / QPochhammer[ -x^4, x^4], {x, 0, n}] (* Michael Somos, Sep 30 2011 *)

a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}] Product[ 1 + x^k, {k, 2, n, 4}], {x, 0, n}] (* Michael Somos, Sep 30 2011 *)

a[ n_] := SeriesCoefficient[ QPochhammer[ x] Product[ 1 + x^k, {k, 2, n, 4}], {x, 0, n}] (* Michael Somos, Sep 30 2011 *)

a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ -x^2, x^4], {x, 0, n}] (* Michael Somos, Sep 30 2011 *)

a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, 1, n, 2}] EllipticTheta[ 3, 0, -x^4], {x, 0, n}] (* Michael Somos, Sep 30 2011 *)

a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] EllipticTheta[ 3, 0, -x^4], {x, 0, n}] (* Michael Somos, Sep 30 2011 *)

a[ n_] := SeriesCoefficient[ 1/2 Product[ 1 + (-x^4)^k, {k, 1, n/4, 2}] EllipticTheta[ 2, 0, x^(1/2)], {x, 0, n + 1/8}] (* Michael Somos, Sep 30 2011 *)

a[ n_] := SeriesCoefficient[ 1/2 QPochhammer[ x^4, x^8] EllipticTheta[ 2, 0, x^(1/2)], {x, 0, n + 1/8}] (* Michael Somos, Sep 30 2011 *)

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^4 + A) / (eta(x + A) * eta(x^8 + A)), n))} /* Michael Somos, Sep 30 2011 */

CROSSREFS

Cf. A040051.

Sequence in context: A088689 A076898 A174294 * A124407 A206442 A137581

Adjacent sequences:  A089382 A089383 A089384 * A089386 A089387 A089388

KEYWORD

sign,easy

AUTHOR

David S. Newman, Dec 28 2003

EXTENSIONS

More terms from Vladeta Jovovic, Dec 31 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 29 08:06 EDT 2015. Contains 261188 sequences.