login
A088966
Numbers n such that A007947(n) = A007947(m+1) and A007947(m) = A007947(n+1), where n > m.
4
3, 8, 24, 80, 288, 1088, 4224, 4374, 16640, 66048, 263168, 1050624, 4198400
OFFSET
1,1
COMMENTS
For every k >= 0, the sequence includes 4^k + 2^(k+1), with m = 2^k + 1. - David Wasserman, Jan 29 2004
So a(13) <= 4198400. - Michel Marcus, Aug 10 2014
Are there other terms like 4374 that are not of this form? - Michel Marcus, Aug 10 2014
FORMULA
G.f.: Conjecture: Q(0)/x - 1/x where Q(k)= 1 + 2^k*x/(1 - 2*x/(2*x + 2^k*x/Q(k+1) )); (continued fraction ). - Sergei N. Gladkovskii, Apr 10 2013
EXAMPLE
With n=3 and m=2, rad(3) = rad(3) and rad(2) = rad(4), so 3 is in the sequence.
MAPLE
rad:= n -> convert(numtheory:-factorset(n), `*`):
count:= 0: lastr:= rad(1):
for n from 2 to 10^7 do
newr:= rad(n);
P[lastr, newr]:= n-1;
if assigned(P[newr, lastr]) then
count:= count+1; A[count]:= n-1; M[count]:= P[newr, lastr];
fi;
lastr:= newr;
od:
seq(A[n], n=1..count); # Robert Israel, Aug 10 2014
MATHEMATICA
(* Recomputation up to a(13), assuming m of the form 2^k+1 *)
rad[n_] := rad[n] = Select[Divisors[n], SquareFreeQ][[-1]];
okQ[n_] := Module[{r = rad[n], r1 = rad[n+1], k, m}, For[k = 0, k < Log[2, n-1], k++, m = 2^k+1; If[r == rad[m+1] && rad[m] == r1, Return[True]]]; False];
Reap[For[n = 1, n <= 5*10^6, n++, If[okQ[n], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Apr 11 2019 *)
PROG
(PARI) lista(nn) = {v = vector(nn, i, rad(i)); for (n=1, nn-1, ok = 0; if (n % 2, ma = 2, ma = 1); forstep (m = ma, n-1, 2, if ((v[n] == v[m+1]) && (v[m] == v[n+1]), ok = 1; break); ); if (ok, print1(n, ", ")); ); } \\ Michel Marcus, Aug 10 2014
CROSSREFS
Cf. A007947 (rad(n)), A087914 (similar sequence), A091697 (the values of m).
Sequence in context: A148785 A148786 A215576 * A242985 A148787 A371979
KEYWORD
nonn,more
AUTHOR
Naohiro Nomoto, Oct 29 2003
EXTENSIONS
More terms from David Wasserman, Jan 29 2004
a(13) confirmed by Robert Israel, Aug 10 2014
STATUS
approved