OFFSET
1,2
COMMENTS
Also the Bell transform of A000262(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016
FORMULA
E.g.f.: exp(y*(exp(x/(1-x))-1)).
MAPLE
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> simplify(hypergeom([-n, -n-1], [], 1)), 9); # Peter Luschny, Jan 26 2016
MATHEMATICA
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
B = BellMatrix[Function[n, Sum[BellY[n+1, k, Range[n+1]!], {k, 0, n+1}]], rows];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny_ *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Vladeta Jovovic, Nov 22 2003
STATUS
approved