OFFSET
1,2
COMMENTS
Also the Bell transform of A000670(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016
Also the number of k-dimensional flats of the n-dimensional Catalan arrangement. - Shuhei Tsujie, May 05 2019
LINKS
N. Nakashima and S. Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
FORMULA
E.g.f.: exp((exp(x)-1)*y/(2-exp(x))).
MAPLE
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> add(combinat:-eulerian1(n+1, k)*2^k, k=0..n+1), 9); # Peter Luschny, Jan 26 2016
MATHEMATICA
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
B = BellMatrix[Function[n, HurwitzLerchPhi[1/2, -n-1, 0]/2], rows];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 27 2018, after Peter Luschny *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Vladeta Jovovic, Nov 22 2003
STATUS
approved