login
A088544
Scale factor by which primitive Pythagorean triangle {x=A088509(n), y=A088510(n), z=A088511(n)} needs be enlarged in order to circumscribe the smallest integral square having a side on the hypotenuse.
2
37, 229, 409, 793, 1261, 2041, 1789, 4381, 5233, 4069, 8317, 6073, 14449, 7969, 12181, 9997, 11041, 23473, 14089, 24457, 17341, 36181, 20773, 53461, 29341, 44269, 28009, 38509, 76297, 35869, 44257, 74209, 42841, 105769, 50137, 65701, 53209
OFFSET
1,1
COMMENTS
Such an inscribed square has side x*y*z = A063011(n).
Also the radius squared of the Conway circle of a primitive Pythagorean triangle, sorted on product of sides. - Frank M Jackson, Nov 04 2023
REFERENCES
J. D. E. Konhauser et al., Which Way Did The Bicycle Go?, Problem 21, "The Square on the Hypotenuse", pp. 7; 79-80, Dolciani Math. Exp. No. 18, MAA, 1996.
LINKS
Eric W. Weisstein, MathWorld: Conway circle.
FORMULA
a(n) = x*y + z^2.
a(n) = s^2 + r^2, where s is the semiperimeter and r is the inradius of triangle (x, y, z).
MATHEMATICA
lst={}; k=25; Do[If[GCD[m, n]==1&&OddQ[m+n], AppendTo[lst, {2m*n(m^4-n^4), m^2(m+n)^2+n^2(m-n)^2}]], {m, 1, k}, {n, 1, m}]; lst=Sort@lst; Table[lst[[n]][[2]], {n, 1, 100}] (* Frank M Jackson, Nov 04 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Nov 17 2003
EXTENSIONS
More terms from Max Alekseyev, May 30 2009
STATUS
approved