OFFSET
1,2
COMMENTS
The sequences {Fibonacci(k*n)/(Fibonacci(k)*Fibonacci(n)): n >= 1} are integral in the three cases k = 1 (A000012), k = 2 (A000032) and k = 5 (the present sequence). See Young, Section 4. - Peter Bala, Jan 09 2023
LINKS
Chatchawan Panraksa and Aram Tangboonduangjit, On Some Arithmetic Properties of a Sequence Related to the Quotient of Fibonacci Numbers, Fibonacci Quart. 55 (2017), no. 1, 21-28.
Paul Thomas Young, p-adic congruences for generalized Fibonacci sequences, The Fibonacci Quarterly, Vol. 32, No. 1, 1994.
FORMULA
a(n) = A103326(n) / 5.
G.f.: -x*(x^4-4*x^3-9*x^2+6*x+1) / ((x-1)*(x^2-7*x+1)*(x^2+3*x+1)). - Colin Barker, Jul 16 2013
The expansion of exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + x + 6*x^2 + 26*x^3 + 151*x^4 + 851*x^5 + 5101*x^6 + ... has integral coefficients and is equal to G(x)^(1/5), where G(x) is the o.g.f. of A001656. See Young, Theorem 3. - Peter Bala, Jan 09 2023
PROG
(PARI) a(n)=fibonacci(5*n)/(5*fibonacci(n)); \\ Joerg Arndt, Jul 16 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Lekraj Beedassy, Nov 17 2003
STATUS
approved