login
A086805
Primes in the numerator of the continued fraction rational approximation of zeta(3).
0
5, 113, 1987, 552493, 628313002458512784191921, 40755082849497410605337341, 6681921617166540622940410282864619819
OFFSET
0,1
PROG
(PARI) \Continued fractions rational approximation of numeric functions cfrac(m, f) = x=f; for(n=0, m, i=floor(x); x=1/(x-i); print1(i, ", ")) cfraczeta(m, f) = { cf = vector(100000); x=f; for(n=0, m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0, m, r=cf[m1+1]; forstep(n=m1, 1, -1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(isprime(numer), print1(numer, ", ")); ) }
CROSSREFS
Sequence in context: A351148 A258177 A224897 * A163014 A199650 A241109
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Aug 05 2003
EXTENSIONS
The next term is too large to include.
STATUS
approved