%I #5 Oct 01 2013 17:57:42
%S 5,113,1987,552493,628313002458512784191921,
%T 40755082849497410605337341,6681921617166540622940410282864619819
%N Primes in the numerator of the continued fraction rational approximation of zeta(3).
%H Cino Hilliard, <a href="http://groups.msn.com/BC2LCC/continuedfractions.msnw">Continued fractions rational approximation of numeric constants</a>.
%o (PARI) \Continued fractions rational approximation of numeric functions cfrac(m,f) = x=f; for(n=0,m,i=floor(x); x=1/(x-i); print1(i,",")) cfraczeta(m,f) = { cf = vector(100000); x=f; for(n=0,m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0,m, r=cf[m1+1]; forstep(n=m1,1,-1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(isprime(numer),print1(numer,",")); ) }
%K easy,nonn
%O 0,1
%A _Cino Hilliard_, Aug 05 2003
%E The next term is too large to include.