login
A086668
Number of divisors d of n such that 2d+1 is a prime.
4
1, 2, 2, 2, 2, 4, 1, 3, 3, 3, 2, 4, 1, 3, 4, 3, 1, 6, 1, 4, 3, 3, 2, 5, 2, 3, 3, 3, 2, 7, 1, 3, 4, 2, 3, 7, 1, 2, 3, 5, 2, 6, 1, 4, 5, 3, 1, 6, 1, 4, 3, 3, 2, 7, 3, 5, 2, 3, 1, 8, 1, 2, 5, 3, 3, 6, 1, 3, 4, 5, 1, 8, 1, 3, 5, 2, 2, 7, 1, 5, 4, 3, 2, 6, 2, 3, 3, 5, 2, 10, 1, 3, 2, 2, 3, 7, 1, 4, 6, 5
OFFSET
1,2
COMMENTS
From Antti Karttunen, Jun 15 2018: (Start)
Number of terms of A005097 that divide n.
For all n >= 1, a(n) > A156660(n). Specifically, a(p) = 2 for all p in A005384 (Sophie Germain primes), although 2's occur in other positions as well.
(End)
LINKS
FORMULA
From Antti Karttunen, Jun 15 2018: (Start)
a(n) = Sum_{d|n} A101264(d).
a(n) = A305818(n) + A101264(n).
(End)
EXAMPLE
10 has divisors 1,2,5 and 10 of which 2.1+1, 2.2+1 and 2.5+1 are prime, so a(10)=3
MATHEMATICA
Table[Count[Divisors[n], _?(PrimeQ[2#+1]&)], {n, 100}] (* Harvey P. Dale, Apr 29 2015 *)
PROG
(PARI) for (n=2, 100, s=0; fordiv(i=n, i, s+=isprime(2*i+1)); print1(", "s))
(PARI) A086668(n) = sumdiv(n, d, isprime(d+d+1)); \\ Antti Karttunen, Jun 15 2018
CROSSREFS
One less than A046886.
Sequence in context: A216322 A335383 A125914 * A092904 A231883 A370690
KEYWORD
nonn
AUTHOR
Jon Perry, Jul 27 2003
EXTENSIONS
Definition modified by Harvey P. Dale, Apr 29 2015
STATUS
approved