login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085740
a(n) = T(n)^2 - n^2, where T(n) is a triangular number.
2
0, 0, 5, 27, 84, 200, 405, 735, 1232, 1944, 2925, 4235, 5940, 8112, 10829, 14175, 18240, 23120, 28917, 35739, 43700, 52920, 63525, 75647, 89424, 105000, 122525, 142155, 164052, 188384, 215325, 245055, 277760, 313632, 352869, 395675, 442260
OFFSET
0,3
COMMENTS
a(n) is the dimension of the second Cartan power of sl(n, C), which is the irreducible representation of sl(n, C) the highest weight of which is twice that of the adjoint representation. - Daniel J. F. Fox, Jan 01 2006
Also the Harary index of the n X n rook graph. - Eric W. Weisstein, Jun 20 2017
a(n) is the dimension of the space of curvature tensors of Kähler type with vanishing Ricci trace on a Hermitian vector space of real dimension 2n. - Daniel J. F. Fox, Nov 21 2018
LINKS
M. Sitaramayya, Curvature tensors in Kaehler manifolds, Transactions of the AMS, 183 (September 1973), 341-353.
Eric Weisstein's World of Mathematics, Harary Index
Eric Weisstein's World of Mathematics, Rook Graph
FORMULA
a(n) = n^2*(n^2+2*n-3)/4.
a(n) = A000096(n)*A000217(n-1).
a(n) = 4*A173963(n+1). - Reinhard Zumkeller, Mar 03 2010
G.f.: x^2*(5+2*x-x^2)/(1-x)^5. - Colin Barker, Mar 17 2012
EXAMPLE
a(3) = T(3)^2 - 3^2 = 6^2 - 9 = 36-9 = 27.
MATHEMATICA
Table[(n - 1) n^2 (n + 3)/4, {n, 20}] (* Eric W. Weisstein, Jun 20 2017 *)
Table[PolygonalNumber[n]^2 - n^2, {n, 20}] (* Eric W. Weisstein, Jun 20 2017 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 5, 27, 84, 200}, 20] (* Eric W. Weisstein, Jun 20 2017 *)
CoefficientList[Series[(x (-5 - 2 x + x^2))/(-1 + x)^5, {x, 0, 20}],
x] (* Eric W. Weisstein, Jun 20 2017 *)
PROG
(PARI) for(n=0, 50, print1(n^2*(n^2-9)/4", "))
(Magma)[n^2*(n^2+2*n-3)/4: n in [0..40]]; // Vincenzo Librandi, Sep 09 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jon Perry, Jul 21 2003
STATUS
approved