login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085609
Decimal expansion of Sum{p prime>=2} log(p)/(p^2-p+1).
8
6, 0, 8, 3, 8, 1, 7, 1, 7, 8, 6, 3, 3, 2, 4, 7, 2, 2, 6, 8, 3, 8, 3, 4, 5, 8, 5, 8, 1, 5, 6, 2, 0, 1, 8, 7, 7, 5, 9, 1, 4, 8, 5, 9, 8, 2, 2, 6, 0, 2, 2, 5, 2, 1, 1, 9, 9, 5, 7, 3, 0, 8, 1, 5, 5, 2, 1, 7, 9, 7, 3, 1, 6, 6, 2, 1, 0, 7, 3, 9, 9, 5, 1, 5, 3, 4, 1, 7, 1, 3, 6, 8, 9, 7, 6, 6, 3, 1, 6, 8, 5, 6, 7, 4, 2
OFFSET
0,1
COMMENTS
Appears in the asymptotic formula for Sum{k=1..n} 1/phi(k), with phi(k) being Euler's totient function. - Stanislav Sykora, Nov 14 2014
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.7 Euler totient constants, p. 116.
LINKS
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 52 (constant Z2).
X. Gourdon, P. Sebah, Some Constants from Number theory.
FORMULA
Equals lim_{n->infinity} (Gamma + log(n) - c*Sum_{k=1..n} 1/phi(k)), where Gamma is the Euler-Mascheroni constant, and c = zeta(6)/(zeta(2)*zeta(3)) = 1/A082695. This equals further lim_{n->infinity} Sum{k=1..n} (1/k - c/phi(k)) and lim_{n->infinity}(A001008(n)/A002805(n) - (A028415(n)/A048049(n))/A082695). - Stanislav Sykora, Nov 15 2014
EXAMPLE
0.60838171786332472...
MATHEMATICA
digits = 105; m0 = 100; dm = 100; Clear[s]; s[n_] := s[n] = Sum[ Switch[ Mod[k, 6], 0, 1, 1, 0, 2, -1, 3, -1, 4, 0, 5, 1] * PrimeZetaP'[k], {k, 2, n}] // N[#, digits+40]&; Print[m0, " ", s[m0]]; s[m = m0+dm]; While[ Print[m, " ", s[m]]; RealDigits[s[m], 10, digits+5] != RealDigits[s[m-dm], 10, digits+5], m = m+dm]; RealDigits[s[m], 10, digits] // First (* Jean-François Alcover, Sep 11 2015 *)
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003
EXTENSIONS
More terms from Benoit Cloitre, Mar 06 2013
More digits from Jean-François Alcover, Sep 11 2015
STATUS
approved