login
A084831
Numbers n such that sum of odd divisors and sum of even divisors are both palindromic.
2
1, 2, 3, 4, 5, 6, 7, 43, 81, 86, 162, 201, 205, 211, 221, 241, 251, 271, 281, 325, 333, 344, 365, 422, 433, 443, 463, 482, 489, 519, 559, 633, 650, 685, 730, 793, 803, 827, 857, 866, 877, 886, 887, 1419, 1505, 1841, 2021, 2111, 2221, 2305, 2441, 2551, 2561, 2611
OFFSET
1,2
COMMENTS
Primes of form 2*10^n + R(n) (A056700) and 2/9*(-1+10^n)-1 (A084832) are members.
LINKS
EXAMPLE
a(11)=162 because sum of even divisors is 242 and sum of odd divisors is 121.
MATHEMATICA
sodQ[n_]:=Module[{dn=Divisors[n], o, e}, o=IntegerDigits[Total[Select[ dn, OddQ]]]; e=IntegerDigits[Total[Select[dn, EvenQ]]]; o== Reverse[o] && e==Reverse[e]]; Select[Range[3000], sodQ] (* Harvey P. Dale, Feb 27 2013 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Jason Earls, Jun 05 2003
STATUS
approved