login
A084237
a(n) = M(10^n), where M(n) is Mertens's function.
7
1, -1, 1, 2, -23, -48, 212, 1037, 1928, -222, -33722, -87856, 62366, 599582, -875575, -3216373, -3195437, -21830254, -46758740, 899990187, 461113106, -3395895277, -2061910120, 62467771689
OFFSET
0,4
LINKS
Eugene Kuznetsov, Computing the Mertens function on a GPU, arXiv:1108.0135 [math.NT], 2011.
Harald A. Helfgott and Lola Thompson, Summing mu(n): a faster elementary algorithm, arXiv:2101.08773 [math.NT], 2021.
Eric Weisstein's World of Mathematics, Mertens Function.
FORMULA
Mertens's function: Sum_{k=1..n} mu(k), where mu = Möbius function (A008683).
a(n) = A002321(10^n).
MATHEMATICA
s = 0; i = 1; Do[ While[i <= 10^n, s = s + MoebiusMu[i]; i++ ]; Print[s], {n, 0, 50}]
PROG
(Perl) use ntheory ":all"; say mertens(10**$_) for 0..15; # Dana Jacobsen, May 22 2015
CROSSREFS
Sequence in context: A054679 A057621 A074809 * A106928 A070934 A296272
KEYWORD
sign,more
AUTHOR
Robert G. Wilson v, May 15 2003
EXTENSIONS
More terms from Eric W. Weisstein, Jun 27 2003
a(17) from Bernardo Boncompagni, Jul 06 2011
Corrected a(17) and added a(18)-a(22) from Eugene Kuznetsov, a(17)-a(19) independently confirmed by Richard Sladkey, Aug 28 2012
a(21)'s sign correction and a(23) from Helfgott and Thompson (2021) added by Amiram Eldar, May 21 2021
STATUS
approved