login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057621 Initial prime in first sequence of n primes congruent to 2 modulo 3. 1
2, 23, 47, 251, 1889, 7793, 43451, 243161, 726893, 759821, 1820111, 1820111, 10141499, 19725473, 19725473, 136209239, 400414121, 400414121, 489144599, 489144599, 766319189, 766319189, 21549657539, 21549657539, 21549657539 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Same as A057622 except for a(1). - Jens Kruse Andersen, May 30 2006

LINKS

Giovanni Resta, Table of n, a(n) for n = 1..35 (terms < 4*10^14)

J. K. Andersen, Consecutive Congruent Primes.

EXAMPLE

a(12) = 1820111 because this number is the first in a sequence of 12 consecutive primes all of the form 3n + 2.

MATHEMATICA

NextPrime[ n_Integer ] := Module[ {k = n + 1}, While[ ! PrimeQ[ k ], k++ ]; Return[ k ] ]; PrevPrime[ n_Integer ] := Module[ {k = n - 1}, While[ ! PrimeQ[ k ], k-- ]; Return[ k ] ]; p = 0; Do[ a = Table[ -1, {n} ]; k = Max[ 1, p ]; While[ Union[ a ] != {2}, k = NextPrime[ k ]; a = Take[ AppendTo[ a, Mod[ k, 3 ] ], -n ] ]; p = NestList[ PrevPrime, k, n ]; Print[ p[ [ -2 ] ] ]; p = p[ [ -1 ] ], {n, 1, 18} ] a(19) > 434562473.

CROSSREFS

Sequence in context: A105440 A139831 A049592 * A074809 A084237 A106928

Adjacent sequences:  A057618 A057619 A057620 * A057622 A057623 A057624

KEYWORD

nonn

AUTHOR

Robert G. Wilson v, Oct 09 2000

EXTENSIONS

More terms from Jens Kruse Andersen, May 30 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 29 05:24 EDT 2015. Contains 261185 sequences.