login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082114
Diagonal sums of number array A082110.
2
1, 2, 9, 32, 89, 210, 441, 848, 1521, 2578, 4169, 6480, 9737, 14210, 20217, 28128, 38369, 51426, 67849, 88256, 113337, 143858, 180665, 224688, 276945, 338546, 410697, 494704, 591977, 704034, 832505, 979136, 1145793, 1334466, 1547273
OFFSET
0,2
FORMULA
a(n) = (n+1)*(n^4 - n^3 + 26*n^2 - 26*n + 30)/30.
From G. C. Greubel, Dec 22 2022: (Start)
G.f.: (1 - 4*x + 12*x^2 - 12*x^3 + 7*x^4)/(1-x)^6.
E.g.f.: (1/30)*(30 + 30*x + 90*x^2 + 50*x^3 + 10*x^4 + x^5)*exp(x). (End)
MATHEMATICA
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 2, 9, 32, 89, 210}, 51] (* G. C. Greubel, Dec 22 2022 *)
PROG
(Magma) [(n+1)*(n^4-n^3+26*n^2-26*n+30)/30: n in [0..50]]; // G. C. Greubel, Dec 22 2022
(SageMath) [(n+1)*(n^4-n^3+26*n^2-26*n+30)/30 for n in range(51)] # G. C. Greubel, Dec 22 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 04 2003
STATUS
approved